17,480 research outputs found

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI

    Star formation in a diffuse high-altitude cloud?

    Full text link
    A recent discovery of two stellar clusters associated with the diffuse high-latitude cloud HRK 81.4-77.8 has important implications for star formation in the Galactic halo. We derive a plausible distance estimate to HRK 81.4-77.8 primarily from its gaseous properties. We spatially correlate state-of-the-art HI, far-infrared and soft X-ray data to analyze the diffuse gas in the cloud. The absorption of the soft X-ray emission from the Galactic halo by HRK 81.4-77.8 is used to constrain the distance to the cloud. HRK 81.4-77.8 is most likely located at an altitude of about 400 pc within the disk-halo interface of the Milky Way Galaxy. The HI data discloses a disbalance in density and pressure between the warm and cold gaseous phases. Apparently, the cold gas is compressed by the warm medium. This disbalance might trigger the formation of molecular gas high above the Galactic plane on pc to sub-pc scales.Comment: 6 pages, 4 figures, accepted for publication in Astronomy & Astrophysic

    Finite Element Analysis of Electromagnetic Waves in Two-Dimensional Transformed Bianisotropic Media

    Full text link
    We analyse wave propagation in two-dimensional bianisotropic media with the Finite Element Method (FEM). We start from the Maxwell-Tellegen's equations in bianisotropic media, and derive some system of coupled Partial Difference Equations (PDEs) for longitudinal electric and magnetic field components. Perfectly Matched Layers (PMLs) are discussed to model such unbounded media. We implement these PDEs and PMLs in a finite element software. We apply transformation optics in order to design some bianisotropic media with interesting functionalities, such as cloaks, concentrators and rotators. We propose a design of metamaterial with concentric layers made of homogeneous media with isotropic permittivity, permeability and magneto-electric parameters that mimic the required effective anisotropic tensors of a bianisotropic cloak in the long wavelength limit (homogenization approach). Our numerical results show that well-known metamaterials can be transposed to bianisotropic media.Comment: 26 pages, 8 figure
    • …
    corecore