7,405 research outputs found

    A Max-Product EM Algorithm for Reconstructing Markov-tree Sparse Signals from Compressive Samples

    Get PDF
    We propose a Bayesian expectation-maximization (EM) algorithm for reconstructing Markov-tree sparse signals via belief propagation. The measurements follow an underdetermined linear model where the regression-coefficient vector is the sum of an unknown approximately sparse signal and a zero-mean white Gaussian noise with an unknown variance. The signal is composed of large- and small-magnitude components identified by binary state variables whose probabilistic dependence structure is described by a Markov tree. Gaussian priors are assigned to the signal coefficients given their state variables and the Jeffreys' noninformative prior is assigned to the noise variance. Our signal reconstruction scheme is based on an EM iteration that aims at maximizing the posterior distribution of the signal and its state variables given the noise variance. We construct the missing data for the EM iteration so that the complete-data posterior distribution corresponds to a hidden Markov tree (HMT) probabilistic graphical model that contains no loops and implement its maximization (M) step via a max-product algorithm. This EM algorithm estimates the vector of state variables as well as solves iteratively a linear system of equations to obtain the corresponding signal estimate. We select the noise variance so that the corresponding estimated signal and state variables obtained upon convergence of the EM iteration have the largest marginal posterior distribution. We compare the proposed and existing state-of-the-art reconstruction methods via signal and image reconstruction experiments.Comment: To appear in IEEE Transactions on Signal Processin

    Compressive Measurement Designs for Estimating Structured Signals in Structured Clutter: A Bayesian Experimental Design Approach

    Full text link
    This work considers an estimation task in compressive sensing, where the goal is to estimate an unknown signal from compressive measurements that are corrupted by additive pre-measurement noise (interference, or clutter) as well as post-measurement noise, in the specific setting where some (perhaps limited) prior knowledge on the signal, interference, and noise is available. The specific aim here is to devise a strategy for incorporating this prior information into the design of an appropriate compressive measurement strategy. Here, the prior information is interpreted as statistics of a prior distribution on the relevant quantities, and an approach based on Bayesian Experimental Design is proposed. Experimental results on synthetic data demonstrate that the proposed approach outperforms traditional random compressive measurement designs, which are agnostic to the prior information, as well as several other knowledge-enhanced sensing matrix designs based on more heuristic notions.Comment: 5 pages, 4 figures. Accepted for publication at The Asilomar Conference on Signals, Systems, and Computers 201

    Compressed sensing reconstruction using Expectation Propagation

    Full text link
    Many interesting problems in fields ranging from telecommunications to computational biology can be formalized in terms of large underdetermined systems of linear equations with additional constraints or regularizers. One of the most studied ones, the Compressed Sensing problem (CS), consists in finding the solution with the smallest number of non-zero components of a given system of linear equations y=Fw\boldsymbol y = \mathbf{F} \boldsymbol{w} for known measurement vector y\boldsymbol{y} and sensing matrix F\mathbf{F}. Here, we will address the compressed sensing problem within a Bayesian inference framework where the sparsity constraint is remapped into a singular prior distribution (called Spike-and-Slab or Bernoulli-Gauss). Solution to the problem is attempted through the computation of marginal distributions via Expectation Propagation (EP), an iterative computational scheme originally developed in Statistical Physics. We will show that this strategy is comparatively more accurate than the alternatives in solving instances of CS generated from statistically correlated measurement matrices. For computational strategies based on the Bayesian framework such as variants of Belief Propagation, this is to be expected, as they implicitly rely on the hypothesis of statistical independence among the entries of the sensing matrix. Perhaps surprisingly, the method outperforms uniformly also all the other state-of-the-art methods in our tests.Comment: 20 pages, 6 figure

    Adaptive Non-uniform Compressive Sampling for Time-varying Signals

    Full text link
    In this paper, adaptive non-uniform compressive sampling (ANCS) of time-varying signals, which are sparse in a proper basis, is introduced. ANCS employs the measurements of previous time steps to distribute the sensing energy among coefficients more intelligently. To this aim, a Bayesian inference method is proposed that does not require any prior knowledge of importance levels of coefficients or sparsity of the signal. Our numerical simulations show that ANCS is able to achieve the desired non-uniform recovery of the signal. Moreover, if the signal is sparse in canonical basis, ANCS can reduce the number of required measurements significantly.Comment: 6 pages, 8 figures, Conference on Information Sciences and Systems (CISS 2017) Baltimore, Marylan

    Info-Greedy sequential adaptive compressed sensing

    Full text link
    We present an information-theoretic framework for sequential adaptive compressed sensing, Info-Greedy Sensing, where measurements are chosen to maximize the extracted information conditioned on the previous measurements. We show that the widely used bisection approach is Info-Greedy for a family of kk-sparse signals by connecting compressed sensing and blackbox complexity of sequential query algorithms, and present Info-Greedy algorithms for Gaussian and Gaussian Mixture Model (GMM) signals, as well as ways to design sparse Info-Greedy measurements. Numerical examples demonstrate the good performance of the proposed algorithms using simulated and real data: Info-Greedy Sensing shows significant improvement over random projection for signals with sparse and low-rank covariance matrices, and adaptivity brings robustness when there is a mismatch between the assumed and the true distributions.Comment: Preliminary results presented at Allerton Conference 2014. To appear in IEEE Journal Selected Topics on Signal Processin
    corecore