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Abstract

We propose a Bayesian expectation-maximization (em) algorithm for reconstructing Markov-tree sparse signals via
belief propagation. The measurements follow an underdetermined linear model where the regression-coefficient vector
is the sum of an unknown approximately sparse signal and a zero-mean white Gaussian noise with an unknown
variance. The signal is composed of large- and small-magnitude components identified by binary state variables
whose probabilistic dependence structure is described by a Markov tree. Gaussian priors are assigned to the signal
coefficients given their state variables and the Jeffreys’ noninformative prior is assigned to the noise variance. Our
signal reconstruction scheme is based on an em iteration that aims at maximizing the posterior distribution of the
signal and its state variables given the noise variance. We construct the missing data for the em iteration so that the
complete-data posterior distribution corresponds to a hidden Markov tree (hmt) probabilistic graphical model that
contains no loops and implement its maximization (m) step via a max-product algorithm. This em algorithm estimates
the vector of state variables as well as solves iteratively a linear system of equations to obtain the corresponding
signal estimate. We select the noise variance so that the corresponding estimated signal and state variables obtained
upon convergence of the em iteration have the largest marginal posterior distribution. We compare the proposed and
existing state-of-the-art reconstruction methods via signal and image reconstruction experiments.

Index Terms

Belief propagation, compressed sensing, expectation-maximization algorithms, hidden Markov models, signal
reconstruction.

I. INTRODUCTION

The advent of compressive sampling (compressed sensing) in the past few years has sparked research activity

in sparse signal reconstruction, whose main goal is to estimate the sparsest p× 1 signal coefficient vector s

from the N × 1 measurement vector y satisfying the following underdetermined system of linear equations:

y = Hs (1)

where H is an N × p sensing matrix and N ≤ p.

A tree dependency structure is exhibited by the wavelet coefficients of many natural images [1]–[7] (see

also Fig. 1(a) and [3, Fig. 2]) as well as one-dimensional signals [1], [7], [8]. A probabilistic Markov

tree structure has been introduced in [1] to model the statistical dependency between the state variables

of wavelet coefficients. An approximate belief propagation algorithm has been first applied to compressive
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sampling by Baron, Sarvotham, and Baraniuk in [9], which employs sparse Rademacher sensing matrices for

Bayesian signal reconstruction. Donoho, Maleki, and Montanari [10] simplified the sum-product algorithm

by approximating messages using a Gaussian distribution specified by two scalar parameters, leading to their

approximate message passing approximate message passing (amp) algorithm. Following the amp framework,

Schniter [11] proposed a turbo-amp structured sparse signal recovery method based on loopy belief propaga-

tion and turbo equalization and applied it to reconstruct one-dimensional signals; [6] applied the turbo-amp

approach to reconstruct compressible images. A generalized approximate message passing (gamp) algorithm

that generalizes the amp algorithm to arbitrary input and output channels and incorporates both max-sum

and sum-product loopy belief propagation separately is proposed in [12]. However, the above references do

not employ the exact form of the messages and also have the following limitations: [9] relies on sparsity

of the sensing matrix, the methods in [9], [10], [12] apply to unstructured signals only, and the turbo-amp

approach in [6] and [11] needs sensing matrices to have approximately independent, identically distributed

(i.i.d.) elements, see [6, Section. III-C]. Indeed, turbo-amp is sensitive to the presence of correlations among

the elements of the sampling matrix and performs poorly if these correlations are sufficiently high and if

norms of the columns or rows of the sampling matrix are sufficiently variable.

In [4] and [5], Markov chain Monte Carlo (mcmc) and variational Bayesian (vb) schemes are used to

reconstruct images that follow probabilistic Markov tree structure from linear measurements; however, [4]

and [5] did not report large-scale examples: these schemes are computationaly demanding and do not scale

with increasing dimensionality of the reconstruction problem.

In this paper, we combine the hierarchical measurement model in [13] with a Markov tree prior on

the binary state variables that identify the large- and small-magnitude signal coefficients and develop a

Bayesian maximum a posteriori (map) expectation-maximization (em) signal reconstruction scheme that

aims at maximizing the posterior distribution of the signal and its state variables given the noise variance,

where the maximization (m) step employs a max-product belief propagation algorithm. Unlike the turbo-amp

scheme in [6] and [11], our reconstruction scheme does not require sensing matrices to have approximately

i.i.d. elements and can handle correlations among these elements. Unlike the previous work, we do not

approximate the message form in our belief propagation scheme. Indeed, the m step of our em algorithm is

exact because the expected complete-data posterior distribution that we maximize in the m step corresponds

to the hidden Markov tree (hmt) graphical model that contains no loops. In [14], we proposed a similar

em algorithm for a random signal model [15] with a purely sparse vector of signal coefficients and a

noninformative prior on this component given the binary state variables. We apply a grid search to select the
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noise variance so that the estimated signal and state variables have the largest marginal posterior distribution.

In Section II, we introduce our measurement and prior models. We assume that the Markov tree prior

distribution is known. To reduce the number of tuning parameters for the tree prior, we further assume that

these parameters do not change between Markov tree levels. This is in contrast to other approaches (e.g.,

[4], [6], and [5]), which learn the Markov tree parameters from the measurements and allow their variation

across the tree levels, see also the discussions in Sections V-B2 and VI. Section III describes the proposed em

algorithm and establishes its properties; the implementation of the m step via the max-product algorithm is

presented in Section III-A. The selection of the noise variance parameter is discussed in Section IV. Numerical

simulations in Section V compare reconstruction performances of the proposed and existing methods.

We introduce the notation: In and 0n×1 denote the identity matrix of size n and the n× 1 vector of zeros,

respectively; “T ”, det(·), and ∥·∥p are the transpose, determinant, and ℓp norm, respectively; N (x|µ,Σ)

denotes the probability density function (pdf) of a multivariate Gaussian random vector x with mean µ

and covariance matrix Σ; Inv-χ2(σ2|ν, σ2
0) denotes the pdf of a scaled inverse chi-square distribution with

ν degrees of freedom and a scale parameter σ2
0 , see [16, App. A]; D

(
p(x) ∥ q(x)

)
denotes the Kullback-

Leibler (kl) divergence from pdf p(x) to pdf q(x) [17, Sec. 2.8.2], [18, Sec. 8.5]; |T | is the cardinality

of the set T ; υ(·) is an invertible operator that transforms the two-dimensional matrix element indices into

one-dimensional vector element indices. Finally, ρH denotes the largest singular value of a matrix H , also

known as the spectral norm of H , and “⊙” denotes the Hadamard (elementwise) product.

II. Measurement and Prior Models

We model an N × 1 real-valued measurement vector y using the standard additive white Gaussian noise

measurement model with the likelihood function given by the following pdf [3], [6]:

py|s,σ2(y|s, σ2) = N (y|Hs, σ2IN) (2)

where H is an N × p real-valued sensing matrix with rank(H) = N satisfying the spectral norm condition

ρH = 1 (3)

s = [s1, s2, . . . , sp]
T is an unknown p× 1 real-valued signal coefficient vector, and σ2 is the unknown noise

variance. We assume (3) without loss of generality because it is easily satisfied by appropriate scaling of

the sensing matrix, measurements, and noise variance,1 provided that the spectral norm of the sensing matrix

is easy to determine, see also footnote 2 for comments on the case where the spectral norm of the sensing

matrix cannot be easily determined or estimated.
1For a generic sensing matrix H ′ with ρH′ ̸= 1, data vector y′ and noise variance (σ2)′, this scaling is performed as follows: H =

H ′/ρH′ ,y = y′/ρH′ , and σ2 = (σ2)′/ρ2H′ , which guarantees that the new sensing matrix H satisfies (3).
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We adopt the Jeffreys’ noninformative prior for the variance component σ2:

pσ2(σ2) ∝ (σ2)−1. (4)

Define the vector of binary state variables q = [q1, q2, . . . , qp]
T ∈ {0, 1}p that determine if the magnitudes

of the signal components si, i = 1, 2, . . . , p are small (qi = 0) or large (qi = 1). Assume that si are
conditionally independent given qi and assign the following prior pdf to the signal coefficients:

ps|q,σ2(s|q, σ2) =

p∏
i=1

[N (si|0, γ2σ2)]qi [N (si|0, ϵ2σ2)]1−qi (5a)

where γ2 and ϵ2 are known positive constants and, typically, γ2 ≫ ϵ2. Hence, the large- and small-magnitude

signal coefficients si corresponding to qi = 1 and qi = 0 are modeled as zero-mean Gaussian random

variables with variances γ2σ2 and ϵ2σ2, respectively. Consequently, γ2 and ϵ2 are relative variances (to the

noise variance σ2) of the large- and small-magnitude signal coefficients. Equivalently,

ps|q,σ2(s|q, σ2) = N (s|0p×1, σ
2D(q)) (5b)

where

D(q) = diag
{
(γ2)q1(ϵ2)1−q1 , (γ2)q2(ϵ2)1−q2 , . . . , (γ2)qp(ϵ2)1−qp

}
. (5c)

We now introduce the Markov tree prior probability mass function (pmf) on the state variables qi [1], [6].

To make this probability model easier to understand, we focus on the image reconstruction scenario where

the elements of s are the two-dimensional discrete wavelet transform (dwt) coefficients of the underlying

image that we wish to reconstruct. Hence, we introduce two-dimensional signal element indices (i1, i2).

Recall that the conversion operator υ(·) is invertible; hence, there is a one-to-one correspondence between

the corresponding one- and two-dimensional signal element indices. A parent wavelet coefficient with a

two-dimensional position index (i1, i2) has four children in the finer wavelet decomposition level with two-

dimensional indices (2i1−1, 2i2−1), (2i1−1, 2i2), (2i1, 2i2−1) and (2i1, 2i2), see Fig. 1(b). The parent-child

dependency assumption implies that, if a parent coefficient in a certain wavelet decomposition level has small

(large) magnitude, then its children coefficients in the next finer wavelet decomposition level tend to have

small (large) magnitude as well. Denote by ρ and κ the numbers of rows and columns of the image, and by

L the number of wavelet decomposition levels (tree depth).

We set the prior pmf pq(q) as follows. In the first wavelet decomposition level (l = 1), assign

pqi(1) = Pr{qi = 1} =

{
1, i ∈ A
Proot, i ∈ Troot

(6a)

where

A = υ
({

1, 2, . . . ,
ρ

2L

}
×
{
1, 2, . . . ,

κ

2L

})
(6b)

Troot = υ
({

1, 2, . . . ,
ρ

2L−1

}
×

{
1, 2, . . . ,

κ

2L−1

})\
A (6c)
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(a)

A

Troot

Tleaf

(b)

Fig. 1. (a) Clustering of significant discrete wavelet transform coefficients of a compressed ‘Cameraman’ image and (b) types of wavelet
decomposition coefficients: approximation, root, and leaf, whose sets are denoted by A, Troot, and Tleaf, respectively.

are the sets of indices of the approximation and root node coefficients and Proot ∈ (0, 1) is a known constant

denoting the prior probability that a root node signal coefficient has large magnitude, see Fig. 1(b). In the

levels l = 2, 3, . . . , L, assign

pqi|qπ(i)
(1|qπ(i)) =

{
PH, qπ(i) = 1

PL, qπ(i) = 0
(6d)

where π(i) denotes the index of the parent of node i. Here, PH ∈ (0, 1) and PL ∈ (0, 1) are known constants

denoting the probabilities that the signal coefficient si is large if the corresponding parent signal coefficient

is large or small, respectively.
The expected number of large-magnitude signal coefficients is

E
[ p∑

i=1

qi

]
=

p

4L

(
1 + 3

L−1∑
l=0

4lPl

)
(7a)

where Pl is the marginal probability that a state variable in the lth tree level is equal to one, computed

recursively as follows:

Pl = Pl−1PH + (1− Pl−1)PL (7b)

initialized by P0 = Proot.

Our wavelet tree structure consists of |Troot| trees and spans all signal wavelet coefficients except the

approximation coefficients; hence, the set of indices of the wavelet coefficients within the trees is

T = υ
(
{1, 2, . . . , ρ} × {1, 2, . . . , κ}

)
\A. (8a)
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Define also the set of leaf variable node indices within the tree structure as
Tleaf = υ

([
{1, 2, . . . , ρ} × {1, 2, . . . , κ}

] \ [{
1, 2, . . . ,

ρ

2

}
×
{
1, 2, . . . ,

κ

2

}])
(8b)

see Fig. 1(b). We have 5 tuning parameters Proot, PH, PL, γ2, and ϵ2, each with a clear meaning. A fairly

crude choice of these parameters is sufficient for achieving good reconstruction performance, see Section V.
The logarithm of the prior pmf pq(q) is

ln pq(q) = const+
[∑
i∈A

ln1(qi = 1)

]
+

[∑
i∈Troot

qi lnProot + (1− qi) ln(1− Proot)

]
+

[ ∑
i∈T \Troot

qiqπ(i) lnPH + (1− qi)qπ(i) ln(1− PH)

+qi(1− qπ(i)) lnPL + (1− qi)(1− qπ(i)) ln(1− PL)

]
(9)

where const denotes the terms that are not functions of q.

A. Bayesian Inference

Define the vectors of state variables and signal coefficients

θ =
[
θT
1 θT

2 · · · θT
p

]T
, θi = [qi, si]

T . (10)

The joint posterior distribution of θ and σ2 is
pθ,σ2|y(θ, σ

2|y) ∝ py|s,σ2(y|s, σ2) ps|q,σ2(s|q, σ2) pq(q) pσ2(σ2)

∝ (σ2)−(p+N+2)/2 exp
[
−0.5

∥y −Hs∥22
σ2

− 0.5
sTD−1(q)s

σ2

]( ϵ2
γ2

)0.5
∑p

i=1 qi
pq(q) (11)

which implies

pσ2|θ,y(σ
2|θ,y) = Inv-χ2

(
σ2

∣∣∣ p+N,
∥y −Hs∥22 + sTD−1(q)s

p+N

)
(12a)

pθ|σ2,y(θ|σ2,y) ∝ exp
[
−0.5

∥y −Hs∥22 + sTD−1(q)s

σ2

]( ϵ2
γ2

)0.5
∑p

i=1 qi
pq(q). (12b)

We integrate the noise variance parameter from the joint posterior distribution as follows (see also [16, (5.5)
on p. 126]):

pθ|y(θ|y) =
pθ,σ2|y(θ, σ

2|y)
pσ2|θ,y(σ2|θ,y)

∝ pq(q)
( ϵ2
γ2

)0.5
∑p

i=1 qi
/[

∥y −Hs∥22 + sTD−1(q)s

p+N

](p+N)/2

. (13a)

For a fixed q, (13a) is maximized with respect to s at

s̄(q) = D(q)HT [IN +HD(q)HT ]−1y (13b)

which is the Bayesian linear-model minimum mean-square error (mmse) estimator of s for a given q [19,

Theorem 11.1]. As ϵ2 decreases to zero, s̄(q) becomes more sparse (becoming exactly sparse for ϵ2 = 0);

as ϵ2 increases, s̄(q) becomes less sparse.

Substituting (13b) into (13a) yields the concentrated (profile) marginal posterior distribution:

max
s
pθ|y(θ|y) ∝ pq(q)

( ϵ2
γ2

)0.5
∑p

i=1 qi
/{

yT [IN +HD(q)HT ]−1y

p+N

}(p+N)/2

(13c)
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Which is a function of the state variables q only.

We wish to maximize (13a) with respect to θ, but cannot perform this task directly. Consequently, we adopt

an indirect approach: We first develop an em algorithm for maximizing pθ|σ2,y(θ|σ2,y) in (12b) for a given

σ2 (Section III) and then apply a grid search scheme for selecting the best noise variance parameter σ2 so that

the estimated signal and state variables have the largest marginal posterior distribution (13a) (Section IV).

III. An EM Algorithm for Maximizing pθ|σ2,y(θ|σ2,y)

Motivated by [13, Sec. V.A], we introduce the following hierarchical two-stage model:
py|z,σ2(y|z, σ2) = N

(
y|Hz, σ2(IN −HHT )

)
(14a)

pz|s,σ2(z|s, σ2) = N (z|s, σ2Ip) (14b)

where z is a p× 1 vector of missing data. Observe that the spectral norm condition (3) guarantees that the

covariance matrix σ2(IN −HHT ) in (14a) is positive semidefinite.
Our em algorithm for maximizing pθ|σ2,y(θ|σ2,y) in (12b) consists of iterating between the following

expectation (e) and m steps (see Appendix A):2

e step: z(j) ≜ Ez|σ2,y,s[z|σ2,y, s(j)] = [z
(j)
1 , z

(j)
2 , . . . , z(j)p ]T = s(j) +HT (y −Hs(j)) (15)

m step: θ(j+1) = argmax
θ

{
−0.5

∥z(j) − s∥22 + sTD−1(q)s

σ2
+ ln[pq(q)] + 0.5 ln

( ϵ2
γ2

) p∑
i=1

qi

}
(16a)

= argmax
θ

ln pθ|σ2,z(θ|σ2, z(j)) (16b)

where j denotes the iteration index. See, e.g., [17, Sec. 11.4], [21], and [22] for a general exposition on the

em algorithm and its properties and [16, Chapter 12.3] for its Bayesian version. To simplify the notation, we

omit the dependence of the iterates on σ2 in this section. Denote by θ(+∞), s(+∞), and q(+∞) the estimates

of θ, s, and q obtained upon convergence of the above em iteration.
For any two consecutive iterations j and j + 1, this em algorithm ensures that the objective posterior

function does not decrease, i.e.,
pθ|σ2,y(θ

(j+1)|σ2,y) ≥ pθ|σ2,y(θ
(j)|σ2,y) (17)

see Appendix A. Monotonic convergence is also a key general property of the em-type algorithms [22].

Theorem 1: The signal and binary state variable estimates s(+∞) and q(+∞) obtained upon convergence

of the em iteration (15)–(16) satisfy

s(+∞) = s̄(q(+∞)). (18)

Hence, this iteration provides an estimate q(+∞) of the vector of state variables q as well as finds the solution

(13b) of the underlying linear system to obtain the corresponding signal estimate.

2If the spectral norm of the sensing matrix H cannot be easily determined or estimated [and, therefore, (3) cannot be ensured], we can introduce
an adaptive positive step size that multiplies the second summand in the e step (15); we also need to divide the first summand in (16a) by this
quantity. Then, the step size adaptation can be performed along the lines of [20], with goal to ensure monotonicity of the em iteration. Such a
step size adaptation (which, in effect, estimates the spectral norm of H) is typically completed within the first few em iterations.
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Proof: See Appendix A.

Consequently, as ϵ2 decreases to zero, s(+∞) becomes more sparse; as ϵ2 increases, s(+∞) becomes less

sparse.

Note that the m step in (16b) is equivalent to maximizing pθ|σ2,z(θ|σ2,z) for the missing data vector

z = z(j). In the following section, we describe efficient maximization of pθ|σ2,z(θ|σ2, z).

A. M Step: Maximizing pθ|σ2,z(θ|σ2,z)

Before we proceed, define

ŝi(0) =
ϵ2

1 + ϵ2
zi, ŝi(1) =

γ2

1 + γ2
zi (19)

where we omit the dependence of ŝi(0) and ŝi(1) on zi to simplify the notation.
Observe that

pθ|σ2,z(θ|σ2,z) ∝ pθA|σ2,z(θA|σ2,z)pθT |σ2,z(θT |σ2,z) (20)
where θA and θT consist of θi, i ∈ A and θi, i ∈ T , respectively, and

pθA|σ2,z(θA|σ2,z) ∝
∏
i∈A

N (zi|si, σ2)N (si|0, γ2σ2)1(qi = 1) (21a)

pθT |σ2,z(θT |σ2,z) ∝
{∏

i∈T

N (zi|si, σ2)[N (si|0, γ2σ2)]qi [N (si|0, ϵ2σ2)]1−qi

}
pqT (qT ). (21b)

Here, (21a) follows from (6a) and (21b) corresponds to the hmt probabilistic model that contains no loops.

Fig. 2 depicts an hmt that is a part of the probabilistic model (21b). Maximizing pθA|σ2,z(θA|σ2, z(j)) in

(21a) with respect to θi, i ∈ A yields

θ̂i = [1, ŝi(1)]
T , i ∈ A (22)

where we have used the identity (B1a) in Appendix B.

We now apply the max-product belief propagation algorithm [23]–[25] to each tree in our wavelet tree

structure, with the goal to find the mode of pθT |σ2,z(θT |σ2,z). We represent the hmt probabilistic model

for pθT |σ2,z(θT |σ2,z) via potential functions as [see (21b)]

pθT |σ2,z(θT |σ2,z) ∝
[ ∏
i∈T \Troot

ψi(θi)ψi,π(i)(qi, qπ(i))

][ ∏
i∈Troot

ψi(θi)

]
(23)

where
ψi(θi) = N (zi|si, σ2)[N (si|0, γ2σ2)]qi [N (si|0, ϵ2σ2)]1−qi (24a)

for i ∈ T \Troot,
ψi(θi) = N (zi|si, σ2)[ProotN (si|0, γ2σ2)]qi [(1− Proot)N (si|0, ϵ2σ2)]1−qi (24b)

for i ∈ Troot, and
ψi,π(i)(qi, qπ(i)) = [PH

qi(1− PH)
1−qi ]qπ(i) [PL

qi(1− PL)
1−qi ]1−qπ(i) (24c)

for i ∈ T \Troot.

Our algorithm for maximizing (23) consists of computing and passing upward and downward messages

and calculating and maximizing beliefs.
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i i
z

Fig. 2. A hmt, part of the probabilistic model (21b).

1) Computing and Passing Upward Messages: We propagate the upward messages from the lowest

decomposition level (i.e., the leaves) towards the root of the tree. Fig. 3(a) depicts the computation of the

upward message from variable node θi to its parent node θπ(i) wherein we also define a child of θi as a

variable node θk with index k ∈ ch(i), where ch(i) is the index set of the children of i: for i = υ(i1, i2),

ch(i) = {υ
(
(2i1−1, 2i2−1), (2i1−1, 2i2), (2i1, 2i2−1), (2i1, 2i2)

)
}. Here, we use a circle and an edge with

an arrow to denote a variable node and a message, respectively. The upward messages have the following

general form [24]:

mi→π(i)(qπ(i)) = αmax
θi

{
ψi(θi)ψi,π(i)(qi, qπ(i))

∏
k∈ch(i)

mk→i(qi)

}
(25)

where α > 0 denotes a normalizing constant used for computational stability [24]. For nodes with no children

(corresponding to level L, i.e., i ∈ Tleaf), we set the multiplicative term
∏

k∈ch(i)mk→i(θi) in (25) to one.

In Appendix B-I, we show that the only two candidates for θi in the maximization of (25) are [0, ŝi(0)]
T

and [1, ŝi(1)]
T , see also (19).

Substituting these candidates into (25) and normalizing the messages yields (see Appendix B-I)

mi→π(i)(qπ(i)) = [µui (0)]
1−qπ(i) [µui (1)]

qπ(i) (26a)
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( ) ( )
( )i i im q

i

( )i

ch( )
( )k k i

(a)

( ) ( )i i im q

i

  sib( )( )k k i

( )i

gp( )i

(b)

Fig. 3. Computing and passing (a) upward and (b) downward messages.

where [µui (0), µ
u
i (1)]

T = µu
i ,

µu
i =

[max{νu
0,i ⊙ ηu

i},max{νu
1,i ⊙ ηu

i}]T

max{νu
0,i ⊙ ηu

i}+max{νu
1,i ⊙ ηu

i}

=

[
exp

(
ln(max{νu

0,i ⊙ ηu
i})− ln(max{νu

1,i ⊙ ηu
i})

)
, 1

]T
1 + exp

(
ln(max{νu

0,i ⊙ ηu
i})− ln(max{νu

1,i ⊙ ηu
i})

) (26b)

νu
0,i = [1− PL, PL]

T ⊙ ϕ(zi) (26c)
νu
1,i = [1− PH, PH]

T ⊙ ϕ(zi) (26d)

ηu
i =

{⊙
k∈ch(i)µ

u
k, i ∈ T \Tleaf

[1, 1]T , i ∈ Tleaf
(26e)

ϕ(z) =
[
exp(−0.5 z2

σ2+σ2ϵ2
)/ϵ, exp(−0.5 z2

σ2+σ2γ2 )/γ
]T

(26f)

and ϵ =
√
ϵ2 > 0 and γ =

√
γ2 > 0. A numerically stable implementation of (26b) that we employ

is illustrated in the second expression in (26b). Similarly, the elementwise products in (26c)–(26e) are

implemented as exponentiated sums of logarithms of the product terms.
2) Computing and Passing Downward Messages: Upon obtaining all the upward messages, we now

compute the downward messages and propagate them from the root towards the lowest level (i.e., the leaves).
Fig. 3(b) depicts the computation of the downward message from the parent θπ(i) to the variable node θi, which
involves upward messages to θπ(i) from its other children, i.e. the siblings of θi, marked as θk, k ∈ sib(i).
This downward message also requires the message sent to θπ(i) from its parent node, which is the grandparent
of θi, denoted by θgp(i). The downward messages have the following general form [24]:

mπ(i)→i(qi) = αmax
θπ(i)

{
ψπ(i)(θπ(i))ψi,π(i)(qi, qπ(i))mgp(i)→π(i)(qπ(i))

∏
k∈sib(i)

mk→π(i)(qπ(i))
}

(27)

where α > 0 denotes a normalizing constant used for computational stability. For the variable nodes i in

the second decomposition level that have no grandparents (i.e., π(i) ∈ Troot), we set the multiplicative term

mgp(i)→π(i)(qπ(i)) in (27) to one.
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In Appendix B-II, we show that the only two candidates for θπ(i) in the maximization of (27) are

[0, ŝπ(i)(0)]
T and [1, ŝπ(i)(1)]

T , see also (19). Substituting these candidates into (27) and normalizing the

messages yields (see Appendix B-II)

mπ(i)→i(qi) = [µdi (0)]
1−qi [µdi (1)]

qi (28a)
for π(i) ∈ T \Tleaf, where [µdi (0), µ

d
i (1)]

T = µd
i and

µd
i =

[max{νd
0,i ⊙ ηd

i},max{νd
1,i ⊙ ηd

i}]T

max{νd
0,i ⊙ ηd

i}+max{νd
1,i ⊙ ηd

i}

=

[
exp

(
ln(max{νd

0,i ⊙ ηd
i})− ln(max{νd

1,i ⊙ ηd
i})

)
, 1

]T
1 + exp

(
ln(max{νd

0,i ⊙ ηd
i})− ln(max{νd

1,i ⊙ ηd
i})

) (28b)

νd
0,i = [1− PL, 1− PH]

T ⊙ ϕ(zπ(i))⊙
[ ⊙
k∈sib(i)

µu
k

]
(28c)

νd
1,i = [PL, PH]

T ⊙ ϕ(zπ(i))⊙
[ ⊙
k∈sib(i)

µu
k

]
(28d)

ηd
i =

{
[1− Proot, Proot]

T , π(i) ∈ Troot
µd

π(i), π(i) ∈ (T \Troot)\Tleaf
. (28e)

A numerically stable implementation of (28b) that we employ is illustrated in the second expression in (28b).

The above upward and downward messages have discrete representations, which is practically important

and is a consequence of the fact that we use a Gaussian prior on the signal coefficients, see (5). Indeed, in

contrast with the existing message passing algorithms for compressive sampling [6], [9]–[11], our max-product

scheme employs exact messages.

3) Maximizing Beliefs: Upon computing and passing all the upward and downward messages, we maxi-

mize the beliefs, which have the following general form [24]:

b(θi) = αψi(θi)mπ(i)→i(qi)
∏

k∈ch(i)

mk→i(qi) (29)

for each i ∈ T , where α > 0 is a normalizing constant. [In (29), we set mπ(i)→i(qi) = 1 if i ∈ Troot and∏
k∈ch(i)mk→i(qi) = 1 if i ∈ Tleaf.] We then use these beliefs to obtain the mode

θ̂T = argmax
θT

pθT |σ2,z(θT |σ2, z) (30)

where the elements of θ̂T are [see (19)]

θ̂i = [q̂i, ŝi(q̂i)]
T = argmax

θi

b(θi) =

{
[1, ŝi(1)]

T , βi(1) ≥ βi(0)

[0, ŝi(0)]
T , otherwise

, i ∈ T (31a)

and

βi = [βi(0), βi(1)]
T =

{
α1[1− Proot, Proot]

T ⊙ ϕ(zi)⊙ ηu
i , i ∈ Troot

α1ϕ(zi)⊙ µd
i ⊙ ηu

i , i ∈ T \Troot
. (31b)

Here, α1 > 0 is a normalizing constant. The detailed derivation for the forms of θ̂i and βi in (31) is provided

in Appendix B-III.
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Fig. 4. Grid search for selecting σ2.

IV. Selecting σ2 via Grid Search

We can integrate σ2 out, yielding the marginal posterior of θ in (13a), and derive an ‘outer’ em iteration for

maximizing pθ|y(θ|y):

(i) fix σ2 and apply the em iteration proposed in Section III to obtain an estimate θ(+∞)(σ2) of θ;

(ii) fix θ to the value obtained in (i) and estimate σ2 as

σ̂2(θ) =
∥y −Hs∥22 + sTD−1(q)s

p+N
. (32)

Even though it guarantees monotonic increase of the marginal posterior pθ|y(θ|y), the ‘outer’ em iteration

(i)–(ii) does not work well in practice because it gets stuck in an undesirable local maximum of pθ|y(θ|y).

To find a better (generally local) maximum of pθ|y(θ|y), we apply a grid search over σ2 as follows.

We apply the em algorithm in Section III using a range of values of the regularization parameter σ2. We

traverse the grid of K values of σ2 sequentially and use the signal estimate from the previous grid point to

initialize the signal estimation at the current grid point (as depicted in Fig. 4): in particular, we move from

a larger σ2 (say σ2
old) to the next smaller σ2

new(< σ2
old) and use s(+∞)(σ2

old) (obtained upon convergence of

the em iteration in Section III for σ2 = σ2
old) to initialize the em iteration at σ2

new. The largest σ2 on the grid

and the initial signal estimate at this grid point are selected as

σ2
MAX =

∥y∥22
p+N

, θ(0)(σ2
MAX) = 02p×1. (33a)

The consecutive grid points σ2
new and σ2

old satisfy

σ2
new =

σ2
old

d
(33b)
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where d > 1 is a constant determining the search resolution. Finally, we select the σ2 from the above grid

of candidates that yields the largest marginal posterior distribution (13a):

σ2
♢ = arg max

σ2∈{σ2
MAX,σ

2
MAX/d,...,σ

2
MAX/d

K−1}
pθ|y(θ

(+∞)(σ2)|y) (34)

and the final estimates of θ and s as θ(+∞)(σ2
♢) and s(+∞)(σ2

♢), respectively, see Fig. 4.

V. Numerical Examples

We compare the reconstruction performances of the following methods:

• our proposed max-product em (mp-em) algorithm in Section III with the variance parameter σ2 selected

via grid search using the marginal-posterior based criterion in Section IV, search resolution d = 2, and

zero initial signal estimate:

s(0) = 0p×1 (35)

with Matlab implementations available at http://home.eng.iastate.edu/~ald/MPEM.html;

• our mp-em algorithm in Section III with σ2 tuned manually for good performance (labeled mp-emopt)

with d = 2 and zero s(0) in (35), used as a benchmark;

• the Gaussian-mixture version of the turbo-amp approach [6] with a Matlab implementation in [26] and

the tuning hyperparameters chosen as the default values3 in this implementation;

• the fixed-point continuation active set (fpcas) algorithm [27] that aims at minimizing the Lagrangian

cost function

0.5∥y −Hs∥22 + τ∥s∥1 (36a)

with the regularization parameter τ computed as

τ = 10a∥HTy∥∞ (36b)

where a is a tuning parameter chosen manually to achieve good reconstruction performance;

• the Barzilai-Borwein version of the gradient-projection for sparse reconstruction (gpsr) method with

debiasing in [28, Sec. III.B] with the convergence threshold tolP = 10−5 and tuning parameter a in

(36b) chosen manually to achieve good reconstruction performance;

• the normalized iterative hard thresholding (niht) scheme [29] initialized by the zero s(0) in (35);

• the model-based iterative hard thresholding (mb-iht) algorithm [7] using a greedy tree approximation

[30], initialized by the zero s(0) in (35);

3These default values were designed for a set of approximately sparse wavelet coefficients of natural images, see [6], which differ from the
simulated signals in Section V-A.
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• the vb tree-structured compressive sensing [5] with a Matlab implementation in [31] and the tuning

hyperparameters chosen as the default values in this implementation.4

For the mp-em, niht, and mb-iht iterations, we use the following convergence criterion:

∥s(j+1) − s(j)∥22
p

< δ (37)

where δ > 0 is the convergence threshold selected in the following examples so that the performances of the

above methods do not change significantly by further decreasing δ.

For mp-em, we set the tuning constants in all following examples as5

γ2 = 1000, ϵ2 = 0.1, Proot = PH = 0.2, PL = 10−5 (38)

which leads to
E[
∑p

i=1 qi]
p

= 0.0108.

The sensing matrix H has the following structure:

H =
1

ρΦ
ΦΨ (39)

where Φ is the N×p sampling matrix and Ψ is the p×p orthogonal transform matrix (satisfying ΨΨT = Ip).

Note that H in (39) satisfies the spectral norm condition (3). We set the tree depth

L = 4. (40)

A. Small-scale Structured Sparse Signal Reconstruction

We generated the binary state variables q of length p = 1024 using the Markov tree model in Section II.

Conditional on qi, si are generated according to (5b). Here, the matrix-to-vector conversion operator υ(·)

corresponds to simple columnwise conversion, except for vb whose implementation [31] requires the use of

Matlab’s wavedec2 function for this purpose. The sampling matrices Φ in (39) have been simulated using

(i) a white Gaussian matrix whose entries are i.i.d. standard Gaussian random variables,

(ii) a row-correlated Gaussian matrix with i.i.d. zero-mean Gaussian columns (indexed by k = 1, 2, . . . , p)

having covariance matrix whose (i, j)th element is

cov(Φi,k,Φj,k) = r|i−j|, i, j = 1, 2, . . . , N (41a)

useful, e.g., in modeling time-series data [32, Sec. 5], and

4We scaled the sensing matrix H by
√

p/ tr(HHT ) prior to applying the vb method, which helped improve its performance compared with
using the unscaled H . This scaling is also applied in the turbo-amp implementation [26].

5The selections of γ2 and ϵ2 in (38) enforce a purely sparse signal model because γ2 ≫ ϵ2. When selecting Proot, PH, and PL, we suggest to use
(7a) and check that the expected number of large-magnitude signal coefficients is roughly of the order of the signal sparsity level that we expect.
For example, the selections in (38) lead to the normalized expected number of large-magnitude signal coefficients E[

∑p
i=1 qi]/p = 0.0108.
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(iii) a column-correlated Gaussian matrix with i.i.d. zero-mean Gaussian rows (indexed by k = 1, 2, . . . , N )

having covariance matrices whose (i, j)th element is

cov(Φk,i,Φk,j) = c|i−j|, i, j = 1, 2, . . . , p. (41b)

The general column correlation model (iii) for the design (sensing) matrices is analyzed in [32]–[34], see

also [35]–[37], which employ this correlation structure. Correlations among columns of the design matrices

occur e.g., in genomic applications [38, Sec. 18.4] and spatially correlated designs are relevant to functional

magnetic resonance imaging (fmri) [39].

The transform matrix Ψ in (39) is chosen to be identity:

Ψ = Ip (42)

hence, in this example, the sampling and sensing matrices Φ and H are the same up to a proportionality

constant.

We simulate the observation vectors y using the measurement and prior models in (2), (5), and (6) and

following model parameters:

ϵ2⋆ = 1, σ2
⋆ = 10−6, (Proot)⋆ = (PH)⋆ = 0.5, (PL)⋆ = 10−4, γ2⋆ ∈ {103, 104, 105} (43)

where the subscripts ⋆ emphasize that these selections are the true model parameters employed to simulate the

measurements and are generally different from the tuning constants (38) employed by the mp-em method.

Here, our goal is to show the performance of the mp-em method in the case where there is a mismatch

between the tuning parameters and corresponding true model parameters. The choices (PH)⋆, (Proot)⋆, and

(PL)⋆ in (43) correspond to the normalized expected number of large-magnitude signal coefficients
E
[∑p

i=1 qi
]

p
= 0.0919 (44)

computed using (7a). We vary the values of γ2⋆ to test the performances of various methods at different

signal-to-noise ratios (snrs).

Our performance metric is the average normalized mean-square error (nmse) of an estimate s̃ of the

signal coefficient vector (used also in e.g., [40]):

NMSE{s̃} = EΦ,s,y

[
∥s̃− s∥22
∥s∥22

]
(45)

computed using 500 Monte Carlo trials, where averaging is performed over the random Gaussian sampling

matrices Φ, signal s, and measurements y.

We select the convergence threshold in (37) to

δ = 10−10. (46)
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For mp-em and mp-emopt, we set the grid lengthK = 16. The tuning parameters for mp-em are given in (38).

The niht and mb-iht methods require knowledge of the signal sparsity level (i.e., an upper bound on

the number of nonzero coefficients); in this example, we set the signal sparsity level for these methods to

the exact number of large-magnitude signal coefficients
∑p

i=1 qi. For gpsr and fpcas, we vary a in (36b)

within the set {−1,−2,−3,−4,−5,−6,−7,−8,−9} and, for each N/p and each of the two methods, we

use the optimal a that achieves the smallest nmse.

The turbo-amp implementation in [26] requires a function input xRange that corresponds to the range of

the input signal Ψs. In this example, we set the value of this tuning constant to six standard deviations of

the signal coefficients in s:

xRange = 6σ⋆

√
E
[∑p

i=1 qi
]

p
γ2⋆ +

(
1−

E
[∑p

i=1 qi
]

p

)
ϵ2⋆ (47)

where σ⋆ =
√
σ2
⋆; turbo-amp with this selection performs well compared with other choices of xRange that

we tested. Selecting too small or too large xRange would lead to deteriorated performance of turbo-amp.

Turbo-amp is particularly sensitive to underestimation of this quantity and less sensitive to selecting larger

values than optimal.

1) White and Row-correlated Sensing Matrices: Fig. 5 shows the nmses of different methods as functions

of the subsampling factor N/p for the three choices of γ2⋆ in (43), corresponding to relatively low, medium,

and high snrs, and white and row-correlated sensing matrices with correlation parameter r = 0.2 in (41a).

Here, a larger value of the high-signal relative variance γ2⋆ implies a relatively higher snr. Indeed, for each

method, the signal with higher snr can be reconstructed with a smaller nmse than the signal with lower

snr: Compare Figs. 5(a), 5(c), and 5(e) as well as Figs. 5(b), 5(d), and 5(f).

For white Gaussian sampling matrices, the methods that employ the probabilistic tree structure of the signal

coefficients (turbo-amp, mp-em, mp-emopt, and vb) clearly outperform all other approaches, see Figs. 5(a),

5(c), and 5(e). For row-correlated Gaussian sampling matrices, mp-em and mp-emopt achieve the best overall

performances, followed by the vb method; turbo-amp is sensitive to introducing correlation among elements

of the sampling matrix Φ and performs poorly for smaller N/p, see Figs. 5(b), 5(d), and 5(f).

For white Gaussian sampling matrices, we observe the following:

• at low snr, mp-em and mp-emopt outperform other approaches when N/p > 0.275, see Fig. 5(a);

• at medium and high snrs, turbo-amp achieves the best overall performance, followed by mp-emopt and

mp-em, see Figs. 5(c) and 5(e).

The niht method performs relatively poorly for smaller N/p, but improves as N/p increases. For

sufficiently high N/p, niht achieves smaller nmses than other methods that do not exploit the probabilistic
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Fig. 5. nmses as functions of the subsampling factor N/p for (a)-(b) low snr with γ2
⋆ = 103, (c)-(d) medium snr with γ2

⋆ = 104, and
(e)-(f) high snr with γ2

⋆ = 105 using [left: (a), (c), (e)] white and [right: (b), (d), (f)] row-correlated sensing matrices with correlation parameter
r = 0.2, respectively.
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Fig. 6. Column-correlated sensing matrices: nmses as functions of (a) the subsampling factor N/p for correlation parameter c = 0.2 and (b)
c for N/p = 0.4 under the medium snr scenario with γ2

⋆ = 104.

tree structure.

In Fig. 5, the nmses of mp-em are close to those of mp-emopt, which implies that the marginal-posterior

based criterion in Section IV selects the noise variance parameter well in this example.

The performance of turbo-amp deteriorates with introduction of correlation among elements of the sampling

matrix Φ: The nmses of turbo-amp for some subsampling factors are more than an order of magnitude larger

for row-correlated sampling matrices than for white sampling matrices. In contrast, the nmses for all the

other methods increase only slightly when we introduce sampling matrix correlation (41a), compare the left

and right-hand sides of Fig. 5. Increasing this correlation by increasing r to 0.3 in (41a) results in further

performance deterioration of turbo-amp (i.e., turbo-amp has very high nmses for all N/p in this case),

whereas the competing methods continue to perform well.

The vb method performs well under both white and row-correlated sensing matrix scenarios and turbo-amp

has a superior reconstruction performance under the white sensing matrix scenario. These good performances

are likely facilitated by the fact that vb and turbo-amp learn the Markov tree parameters from the measure-

ments.

2) Column-correlated Sensing Matrices: Fig. 6(a) shows the nmses of different methods as functions of

the subsampling factor N/p for column-correlated sampling matrices having the correlation constant c = 0.2

in (41b) under the medium snr scenario. Here, mp-em and mp-emopt have the smallest nmses over nearly

the entire range of N/p considered. Fig. 6(b) shows the nmses as functions of c for N/p fixed at 0.4. Here,

only turbo-amp is very sensitive to the presence of correlations among the elements of the sampling matrix,

whereas all other methods vary only slightly as functions of c.
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We also observe numerical instability of turbo-amp when correlated Gaussian sampling matrices are

employed, which is exhibited by the oscillatory behavior of its nmses in the right side of Fig. 5 and

in Fig. 6 [demanding more averaging than the 500 Monte Carlo trials that we employ to estimate (45)].

We simulated sampling matrices Φ that have variable column norms or row norms, which led to deteri-

orating performances of turbo-amp in both cases, whereas the competing methods perform well. The fact

that turbo-amp has been derived assuming Gaussian sensing matrices with i.i.d. elements explains its poor

performance for sensing matrices that deviate sufficiently from this assumption.

The mb-iht method, which employs a greedy tree approximation and deterministic tree structure, achieves

quite a poor nmse performance in Figs. 5 and 6. A relatively poor performance of mb-cosamp (which

employs the same deterministic tree structure) has also been reported in [6, Sec. IV.B].

B. Image Reconstruction

We reconstruct 128× 128 and 256× 256 test images from noiseless compressive samples (σ2
⋆ = 0). Here,

the matrix-to-vector conversion operator υ(·) is based on the columnwise conversion for 128× 128 images,

and Matlab wavelet decomposition function wavedec2 with Haar wavelet for 256× 256 images, which has

also been used in [4] and [6]. Before taking the wavelet transform, we subtract the mean of original image

to ensure that Ψs has zero mean.

For turbo-amp, we set the function input xRange to 255, which is the difference between the minimum

and maximum possible image values in this example.6 Observe that the turbo-amp implementation in [26]

needs additional prior information about the signal range, which is not required by other methods.

1) Medium scale with row-correlated Gaussian sampling matrices: We reconstruct the 128 × 128

‘Cameraman’ image (cropped from the original 256 × 256 image in Fig. 9(b), as was also done in [26],

[31] and corresponding papers [5], [6]) from compressive samples generated using row-correlated Gaussian

sampling matrices with covariances between the elements described by (41a). Our performance metric is the

nmse in (45) computed using 10 Monte Carlo trials, where the averaging is performed only over the random

Gaussian sampling matrices Φ.

In this example, the convergence threshold in (37) is set to

δ = 0.01. (48)

For mp-em and mp-emopt, we set the grid lengthK = 16. The tuning parameters for mp-em are given in (38).

We set the sparsity level r for niht as 2000N/p and 2500N/p for mb-iht, tuned for good nmse

performance.
6The authors thank Dr. Subhojit Som from Microsoft Inc. for the correspondence with regard to setting this parameter.
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Fig. 7. (a) nmses and (b) cpu times as functions of the correlation parameter r for the 128× 128 ‘Cameraman’ image when N/p = 0.3.

Fig. 7 shows the nmses and cpu times of different methods reconstructing the 128× 128 ‘Cameraman’

image as functions of the correlation parameter r in (41a) with N/p = 0.3. Since mp-em and mp-emopt

have the same runtime, we report only that of mp-em in Fig. 7(b). Turbo-amp has the smallest nmse when

N/p ≤ 0.12. However, its nmse increases sharply as r becomes larger: turbo-amp has the largest nmse

when N/p > 0.22. In contrast, the nmses for all the other methods keep nearly constants as we increase r.

The mp-em, mp-emopt, and vb methods have smaller nmses than gpsr, fpcas, niht, and mb-iht for all

the correlation coefficients r considered. The vb approach performs slightly better than mp-em, but is slower

than mp-em and mp-emopt. In terms of cpu time, niht is the fastest among all the methods compared and

turbo-amp requires 0.3 s to 8.6 s more than niht, both of which are faster than the remaining methods.7 The

vb scheme consumes the largest amount of cpu time among all the methods for all the correlation coefficient

r considered; mp-em and mp-emopt are faster than gpsr, fpcas, mb-iht, and vb.

As before, the good performance of vb is likely facilitated by the fact that it learns the Markov tree

parameters from the measurements.

Fig. 8 shows the reconstructed 128 × 128 ‘Cameraman’ image by different methods for N/p = 0.3 and

r = 0.2 using one realization of the sampling matrix Φ. In Fig. 8, we also report the peak signal-to-noise

ratios (psnrs) of these methods, where the psnr of an estimated signal s̃ is defined as [41, eq. (3.7)]:

PSNR (dB) = 10 log10

{
[(Ψs)MAX − (Ψs)MIN]

2

∥s̃− s∥22/p

}
. (49)

7Regarding the reported cpu time, note that the turbo-amp code does not use Matlab only, but combines Matlab and JAVA codes.
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(a) mp-emopt (psnr 26.3 dB) (b) vb (psnr 25.8 dB) (c) mp-em (psnr 24.9 dB) (d) turbo-amp (psnr 23.8 dB)

(e) fpcas (psnr 22.0 dB) (f) gpsr (psnr 22.0 dB) (g) niht (psnr 20.2 dB) (h) mb-iht (psnr 18.7 dB)

Fig. 8. The 128× 128 ‘Cameraman’ image reconstructed by various methods for r = 0.2 and N/p = 0.3.

2) Large scale with structurally random sampling matrices: We now reconstruct several 256× 256 test

images shown in Fig. 9 from compressive samples. The sampling matrix Φ is generated using structurally

random compressive samples [42] and the transform matrix Ψ in (39) is the p× p orthogonal inverse Haar

wavelet transform matrix, which implies that the sensing matrix H has orthonormal rows: HHT = IN and,

consequently, ρΦ = ρH = 1. Our performance metric in this example is the psnr, see (49).

In this example, the convergence threshold in (37) is set to

δ = 0.1. (50)

For mp-em and mp-emopt, we set the grid length K = 12. The tuning parameters for mp-em are the same

as before and given in (38).

We set the signal sparsity levels for niht and mb-iht to 10000N/p and 15000N/p, respectively, tuned

for good psnr performance. For fpcas and gpsr, we set the regularization parameter a = −3 [see (36b)],

which yields generally the best psnr performance for these two methods.

We do not include the vb method in this example because its implementation [31] cannot be applied to

reconstruct the large-scale images in Fig. 9.

Fig. 10 shows the psnrs and cpu times of different methods reconstructing the 256× 256 ‘Cameraman’

image, as functions of the subsampling factor N/p. Turbo-amp has the highest psnrs for all N/p. The

performances of mp-em and mp-emopt are close to that of turbo-amp: the psnrs of mp-emopt are 0.4 dB
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(a) Lena (b) Cameraman (c) House (d) Boat (e) Einstein (f) Peppers (g) Couple

Fig. 9. The 256× 256 test images.
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Fig. 10. (a) psnrs and (b) cpu times as functions of the subsampling factor N/p for the 256× 256 ‘Cameraman’ image.

to 0.7 dB less than those of turbo-amp. Moreover, the psnr improvement for mp-em against its other

closest competitors varies between 2.1 dB to 3.2 dB. In terms of cpu time, niht is the fastest among all the

methods compared; turbo-amp is the second fastest and takes around 4 s for each N/p. The mp-em method

requires 3.3 s to 6.5 s more than turbo-amp, but is clearly faster than gpsr, fpcas, and mb-iht for nearly

all measurement points. As before, mp-em and mp-emopt have the same runtime and we report only that of

mp-em in Fig. 10(b).

Table I shows the psnrs of the compared methods for different images and N/p equal to 0.35. The mp-

em, mp-emopt, and turbo-amp methods clearly outperform the other methods for every image. In Table I,

turbo-amp is better than mp-emopt and mp-em for all the images: The improvement in terms of psnr varies

between 0.3 dB and 1.4 dB.

In Fig. 10 and Table I, mb-iht achieves a fair performance and consumes the the largest amount of cpu

time. Turbo-amp performs well for all N/p and images and outperforms all competitors, which is likely

because

• it uses a more general prior on the binary state variables (than our mp-em method), which allows the

tree probability parameters PH, PL, γ2, and ϵ2 to vary between the signal decomposition levels, and
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TABLE I
psnrs for N/p = 0.35.

niht mb-iht fpcas gpsr turbo-amp mp-em mp-emopt

Lena 24.3 24.8 25.3 25.5 29.2 27.8 27.9
Cameraman 26.0 26.0 26.8 26.8 30.6 29.9 30.1
House 29.8 29.7 30.5 30.5 33.4 32.6 33.1
Boat 22.5 22.9 23.7 24.0 27.1 26.1 26.1
Einstein 26.9 27.4 27.4 27.7 30.4 30.0 30.0
Peppers 25.8 26.2 26.1 26.2 30.2 29.2 29.3
Couple 28.8 29.1 30.3 30.2 33.6 32.6 32.7

• learns the tree probability parameters parameters from the measurements.

In contrast, our mp-em method employs the crude choices of the tree and other tuning parameters in (38).

(a) True Image (b) turbo-amp (psnr = 30.59 dB) (c) mp-emopt (psnr = 30.08 dB) (d) mp-em (psnr = 29.89 dB)

(e) gpsr (psnr = 26.83 dB) (f) fpcas (psnr = 26.75 dB) (g) mb-iht (psnr = 26.01 dB) (h) niht (psnr = 25.91 dB)

Fig. 11. The ‘Cameraman’ image reconstructed by various methods for N/p = 0.35.

Fig. 11 shows the reconstructed 256 × 256 ‘Cameraman’ image by different methods for N/p = 0.35:

In this case, the turbo-amp algorithm achieves the best reconstructed image quality compared with other

methods, followed closely by mp-em and mp-emopt; the reconstructions of all other methods are clearly

inferior to these schemes.

VI. Concluding Remarks

We presented a Bayesian em algorithm for reconstructing approximately sparse signal from compressive

samples using a Markov tree prior for the signal coefficients. We employed the max-product belief propagation

algorithm to implement the m step of the proposed em iteration. Compared with the existing message passing
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algorithms in the compressive sampling area, our method does not approximate the message form. The

simulation results show that our algorithm often outperforms existing algorithms for simulated signals and

standard test images with different sampling operators and can successfully reconstruct signals collected by

sampling matrices with correlated elements and variable norms of rows and columns.

Our future work will include the convergence analysis of the mp-em algorithm, incorporating other

measurement models, using a more general prior distribution for the binary state variables, and designing

schemes for learning the probabilistic Markov tree parameters from the measurements.

Appendix A
Derivation of the MP-EM Iteration and Proofs of Its Monotonicity and Theorem 1

We first determine the complete-data posterior distribution and the distribution of the missing data z given

the observed data y and parameters θ and σ2. We then use these distributions to derive the em iteration in

Section III following the standard approach outlined in, e.g., [16, Sec. 12.3]. Finally, we prove the monotonicity

of the mp-em iteration in (17) and Theorem 1.
Consider the hierarchical two-stage model in (14). The complete-data posterior distribution for known σ2 is

pθ,z|σ2,y(θ,z|σ2,y) ∝ py|z,σ2(y|z, σ2)pz|s(z|s)ps|q,σ2(s|q, σ2)pq(q)

∝ exp{−0.5(y −Hz)T [C(σ2)]−1(y −Hz)}√
det[C(σ2)]

( ϵ2
γ2

)0.5
∑p

i=1 qi
pq(q)

· exp[−0.5∥z − s∥22/σ2 − 0.5sTD−1(q)s/σ2] (A1a)

where

C(σ2) = σ2(IN −HHT ). (A1b)

Consequently, the distribution of the missing data z given the observed data y and parameters θ and σ2 is
pz|σ2,y,θ(z|σ2,y,θ) = pz|σ2,y,s(z|σ2,y, s) = N

(
z|Ez|σ2,y,s(z|σ2,y, s), covz|σ2,y,s(z|σ2,y, s)

)
(A1c)

where
Ez|σ2,y,s(z|σ2,y, s) = {HT [C(σ2)]−1H + Ip/σ

2}−1{HT [C(σ2)]−1y + s/σ2} (A1d)
covz|σ2,y,s(z|σ2,y, s) = {HT [C(σ2)]−1H + Ip/σ

2}−1. (A1e)

By using the matrix inversion lemma [43, eq. (2.22), p. 424]:

(R + STU)−1 = R−1 −R−1S(T−1 + UR−1S)−1UR−1 (A2a)

and the following identity [43, p. 425]:

(R + STU)−1ST = R−1S(T−1 + UR−1S)−1 (A2b)

we simplify the conditional mean of the missing data in (A1d) to the familiar backprojection form:

Ez|σ2,y,s[z|σ2,y, s] = s+HT (y −Hs). (A3)
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We now derive the em iteration in Section III by noting that the objective function ln pθ|σ2,y(θ|σ2,y) that
we aim to maximize satisfies the following property [see e.g., [16, eq. (12.4)]]:

ln pθ|σ2,y(θ|σ2,y) = Q(θ|θ(j))−H(θ|θ(j)) (A4a)
where

Q(θ|θ(j)) ≜ Ez|σ2,y,θ

[
ln pθ,z|σ2,y(θ, z|σ2,y)|σ2,y,θ(j)

]
(A4b)

H(θ|θ(j)) ≜ Ez|σ2,y,θ

[
ln pz|σ2,y,θ(z|σ2,y,θ)|σ2,y,θ(j)

]
(A4c)

are the expected complete-data log-posterior distribution and negative entropy of the conditional missing
data pdf. The expected complete-data log-posterior Q(θ|θ(j)) follows easily by taking the logarithm of the
complete-data posterior distribution (A1a), ignoring constant terms (not functions of θ), and computing the
conditional expectation with respect to the missing data given the observed data and parameters from the jth
iteration:

Q(θ|θ(j)) = const+ Ez|σ2,y,θ

{
−0.5

∥z − s∥22 + sTD−1(q)s

σ2
+ ln[pq(q)] + 0.5 ln

( ϵ2
γ2

) p∑
i=1

qi

∣∣∣∣σ2,y,θ(j)

}
= const− 0.5

∥z(j) − s∥22 + sTD−1(q)s

σ2
+ ln[pq(q)] + 0.5 ln

( ϵ2
γ2

) p∑
i=1

qi (A5a)

where const denotes the terms that are not functions of θ and z(j) is the conditional mean of the missing

data in (15) that follows from (A3). To determine the conditional expectation in (A5a), we only need the

conditional mean of the missing data in (15), which therefore constitutes the e step. Now, the m step requires

maximization of Q(θ|θ(j)) with respect to θ:

θ(j+1) = argmax
θ

Q(θ|θ(j)) (A5b)

and (16a) follows from (A5a).
The monotonicity of the mp-em iteration in (17) follows from
ln pθ|σ2,y(θ

(j+1)|σ2,y)− ln pθ|σ2,y(θ
(j)|σ2,y) = H(θ(j)|θ(j))−H(θ(j+1)|θ(j))

+Q(θ(j+1)|θ(j))−Q(θ(j)|θ(j)) (A5a)
= D

(
pz|σ2,y,θ(z|σ2,y,θ(j)) ∥ pz|σ2,y,θ(z|σ2,y,θ(j+1))

)
+Q(θ(j+1)|θ(j))−Q(θ(j)|θ(j)) ≥ 0 (A5b)

by the nonnegativity of kl divergence [17, Theorem 2.8.1], [18, Theorem 8.6.1] and the fact thatQ(θ(j+1)|θ(j))−

Q(θ(j)|θ(j)) ≥ 0 because Q(θ|θ(j)) is maximized at θ(j+1). Here, (A5b) follows from (A5a) by using the

identity H(θ|θ)−H(θ′|θ) = D
(
pz|σ2,y,θ(z|σ2,y,θ) ∥ pz|σ2,y,θ(z|σ2,y,θ′)

)
.

Proof of Theorem 1: For a given q, (A5a) is a quadratic function of s that is easy to maximize with

respect to s [see also (10)]:

argmax
s

Q(θ|θ(j)) =
[
D−1(q) + Ip

]−1
z(j). (A6)

Therefore, the estimates of s and q obtained upon convergence of the em iteration in Section III to its fixed
point satisfy:

s(+∞) =
[
D−1(q(+∞)) + Ip

]−1
z(+∞)

=
[
D−1(q(+∞)) + Ip

]−1[
s(+∞) +HT (y −Hs(+∞))

]
(A7)

where the second equality follows by using (15). Solving (A7) for s(+∞) yields
s(+∞) =

[
D−1(q(+∞)) +HTH

]−1
HTy (A8)

and (18) follows.
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Appendix B
Derivation of the Messages and Beliefs in Section III-A

Before we proceed, note the following useful identities:

argmax
si

N (zi|si, σ2)N (si|0, τ 2) =
τ 2zi

σ2 + τ 2
(B1a)

max
si

N (zi|si, σ2)N (si|0, τ 2) =
1√

2πσ2
√
2πτ 2

exp
(
−0.5

z2i
σ2 + τ 2

)
. (B1b)

I Upward Messages
1) Upward Messages from Leaf Nodes: When passing upward messages from the leaf nodes i ∈ Tleaf,

we set the multiplicative term
∏

k∈ch(i)mk→i(qi) to one, yielding [see (25)]

mi→π(i)(qπ(i)) = αmax
θi

{
N (zi|si, σ2)[N (si|0, γ2σ2)]qi [N (si|0, ϵ2σ2)]1−qi

·[P qi
H (1− PH)

1−qi ]qπ(i) [P qi
L (1− PL)

1−qi ]1−qπ(i)

}
. (B2)

For qπ(i) = 0, we have

mi→π(i)(0) = µui (0) = α1max
{
(1− PL) exp

(
−0.5

z2i
σ2 + σ2ϵ2

)/
ϵ, PL exp

(
−0.5

z2i
σ2 + σ2γ2

)/
γ

}
(B3a)

and, for qπ(i) = 1, we have

mi→π(i)(1) = µui (1) = α1max
{
(1− PH) exp

(
−0.5

z2i
σ2 + σ2ϵ2

)/
ϵ, PH exp

(
−0.5

z2i
σ2 + σ2γ2

)/
γ

}
(B3b)

where we have used (B1b) with τ 2 = σ2ϵ2 and τ 2 = σ2γ2 and α1 > 0 is an appropriate normalizing constant.

It follows from (B1a) that the only two candidates of θi to maximize (B2) are [0, ŝi(0)]
T and [1, ŝi(1)]

T .
2) Upward Messages from Non-Leaf Nodes: For i ∈ T \Tleaf, we can use induction to simplify the

multiplicative term
∏

k∈ch(i)mk→i(qi) in (25) as follows:∏
k∈ch(i)

mk→i(qi) =

[ ∏
k∈ch(i)

µuk(0)

]1−qi[ ∏
k∈ch(i)

µuk(1)

]qi
(B4)

see also Fig. 3(a).
Substituting (B4) into (25) yields

mi→π(i)(qπ(i)) = αmax
θi

{
N (zi|si, σ2)[N (si|0, γ2σ2)]qi [N (si|0, ϵ2σ2)]1−qi [P qi

H (1− PH)
1−qi ]qπ(i)

·[P qi
L (1− PL)

1−qi ]1−qπ(i)

[ ∏
k∈ch(i)

µuk(0)

]1−qi[ ∏
k∈ch(i)

µuk(1)

]qi}
. (B5)

For qπ(i) = 0, we have

mi→π(i)(0) = α1max

{
(1− PL)

[ ∏
k∈ch(i)

µuk(0)

]
exp

(
−0.5

z2i
σ2 + σ2ϵ2

)/
ϵ,

PL

[ ∏
k∈ch(i)

µuk(1)

]
exp

(
−0.5

z2i
σ2 + σ2γ2

)/
γ

}
(B6a)
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and, for qπ(i) = 1, we have

mi→π(i)(1) = α1max

{
(1− PH)

[ ∏
k∈ch(i)

µuk(0)

]
exp

(
−0.5

z2i
σ2 + σ2ϵ2

)/
ϵ,

PH

[ ∏
k∈ch(i)

µuk(1)

]
exp

(
−0.5

z2i
σ2 + σ2γ2

)/
γ

}
(B6b)

where we have used (B1b) with τ 2 = σ2ϵ2 and τ 2 = σ2γ2 and α1 > 0 is an appropriate normalizing constant.

It follows from (B1a) that the only two candidates of θi to maximize (B5) are [0, ŝi(0)]
T and [1, ŝi(1)]

T .

II Downward Messages

Based on the results in Section III-A1 and Appendix B-I, we simplify the product of upward messages sent

from the siblings of node i in (27) as follows [see (26a)]:∏
k∈sib(i)

mk→π(i)(qπ(i)) =

[ ∏
k∈sib(i)

µuk(0)

]1−qπ(i)
[ ∏
k∈sib(i)

µuk(1)

]qπ(i)

(B7)

see also Fig. 3(b).
1) Downward Messages from Root Nodes: For the node π(i) ∈ Troot, we set the messagemgp(i)→π(i)(qπ(i))

to one, yielding [see (27)]

mπ(i)→i(qi) = αmax
θπ(i)

{
ψπ(i)(θπ(i))ψi,π(i)(qi, qπ(i))

∏
k∈sib(i)

mk→π(i)(qπ(i))

}
. (B8)

Substituting (B7) into (B8) yields

mπ(i)→i(qi) = αmax
θπ(i)

{
N (zπ(i)|sπ(i), σ2)[ProotN (sπ(i)|0, γ2σ2)]qπ(i) [(1− Proot)N (sπ(i)|0, ϵ2σ2)]1−qπ(i)

·[P qi
H (1− PH)

1−qi ]qπ(i) [P qi
L (1− PL)

1−qi ]1−qπ(i)

[ ∏
k∈sib(i)

µuk(0)

]1−qπ(i)
[ ∏
k∈sib(i)

µuk(1)

]qπ(i)
}
. (B9)

For qi = 0, we have

mπ(i)→i(0) = α1max
{
(1− Proot)(1− PL)

[ ∏
k∈sib(i)

µuk(0)

]
exp

(
−0.5

z2π(i)
σ2 + σ2ϵ2

)/
ϵ,

Proot(1− PH)

[ ∏
k∈sib(i)

µuk(1)

]
exp

(
−0.5

z2π(i)
σ2 + σ2γ2

)/
γ

}
(B10a)

and for qi = 1, we have

mπ(i)→i(1) = α1max
{
(1− Proot)PL

[ ∏
k∈sib(i)

µuk(0)

]
exp

(
−0.5

z2π(i)
σ2 + σ2ϵ2

)/
ϵ,

ProotPH

[ ∏
k∈sib(i)

µuk(1)

]
exp

(
− 0.5

z2π(i)
σ2 + σ2γ2

)/
γ

}
(B10b)

where we have used (B1b) with τ 2 = σ2ϵ2 and τ 2 = σ2γ2 and α1 > 0 is an appropriate normalizing

constant. It follows from (B1a) that the only two candidates of θπ(i) to maximize (B9) are [0, ŝπ(i)(0)]
T and

[1, ŝπ(i)(1)]
T .
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2) Downward Messages from Non-Root Nodes: For the node π(i) ∈ (T \Troot)\Tleaf, using the same
strategy as above, (27) simplifies as

mπ(i)→i(qi) = αmax
θπ(i)

{
N (zπ(i)|sπ(i), σ2)[N (sπ(i)|0, γ2σ2)]qπ(i) [N (sπ(i)|0, ϵ2σ2)]1−qπ(i)

·[P qi
H (1− PH)

1−qi ]qπ(i) [P qi
L (1− PL)

1−qi ]1−qπ(i)

[ ∏
k∈sib(i)

µuk(0)

]1−qπ(i)
[ ∏
k∈sib(i)

µuk(1)

]qπ(i)

·[µdπ(i)(0)]1−qπ(i) [µdπ(i)(1)]
qπ(i)

}
. (B11)

For qi = 0, we have

mπ(i)→i(0) = α1max
{
µdπ(i)(0)(1− PL)

[ ∏
k∈sib(i)

µuk(0)

]
exp

(
−0.5

z2π(i)
σ2 + σ2ϵ2

)/
ϵ,

µdπ(i)(1)(1− PH)

[ ∏
k∈sib(i)

µuk(1)

]
exp

(
−0.5

z2π(i)
σ2 + σ2γ2

)/
γ

}
(B12a)

and for qi = 1, we have

mπ(i)→i(1) = α1max
{
µdπ(i)(0)PL

[ ∏
k∈sib(i)

µuk(0)

]
exp

(
−0.5

z2π(i)
σ2 + σ2ϵ2

)/
ϵ,

µdπ(i)(1)PH

[ ∏
k∈sib(i)

µuk(1)

]
exp

(
−0.5

z2π(i)
σ2 + σ2γ2

)/
γ

}
(B12b)

where we have used (B1b) with τ 2 = σ2ϵ2 and τ 2 = σ2γ2 and α1 > 0 is an appropriate normalizing constant.

It follows from (B1a) that the only two candidates to maximize (B11) are [0, ŝπ(i)(0)]
T and [1, ŝπ(i)(1)]

T .

III Beliefs

Define the vector βi = [βi(0), βi(1)]
T as

βi(0) = max
si

b([0, si]
T ), βi(1) = max

si
b([1, si]

T ) (B13)

where b(θi) are the beliefs defined in (29).
1) Beliefs for the Root Nodes: For root nodes i ∈ Troot, the beliefs b(θi) in (29) become

b(θi) = αN (zi|si, σ2)[ProotN (si|0, γ2σ2)]qi [(1− Proot)N (si|0, ϵ2σ2)]1−qi

·
[ ∏
k∈ch(i)

µuk(0)
]1−qi[ ∏

k∈ch(i)

µuk(1)
]qi . (B14)

and (B13) simplify to [see (B1b)]

βi(0) = α
1√

2πσ2
√
2πϵ2σ2

exp
(
− 0.5

z2i
σ2 + σ2ϵ2

)
(1− Proot)

∏
k∈ch(i)

µuk(0) (B15a)

βi(1) = α
1√

2πσ2
√

2πγ2σ2
exp

(
− 0.5

z2i
σ2 + σ2γ2

)
Proot

∏
k∈ch(i)

µuk(1) (B15b)

yielding βi = [βi(0), βi(1)]
T = α1[1− Proot, Proot]

T ⊙ ϕ(zi)⊙ ηu
i .
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2) Beliefs for the Non-Root Non-Leaf Nodes: For i ∈ (T \Troot)\Tleaf, the beliefs b(θi) in (29) become

b(θi) = αN (zi|si, σ2)[N (si|0, γ2σ2)]qi [N (si|0, ϵ2σ2)]1−qi [µdi (0)]
1−qi [µdi (1)]

qi

·
[ ∏
k∈ch(i)

µuk(0)

]1−qi[ ∏
k∈ch(i)

µuk(1)

]qi
(B16)

and (B13) simplify to [see (B1b)]

βi(0) = α
1√

2πσ2
√
2πϵ2σ2

exp
(
−0.5

z2i
σ2 + σ2ϵ2

)
µdi (0)

∏
k∈ch(i)

µuk(0) (B17a)

βi(1) = α
1√

2πσ2
√
2πγ2σ2

exp
(
−0.5

z2i
σ2 + σ2γ2

)
µdi (1)

∏
k∈ch(i)

µuk(1) (B17b)

yielding βi = [βi(0), βi(1)]
T = α1ϕ(zi)⊙ µd

i ⊙ ηu
i .

3) Beliefs for the Leaf Nodes: For i ∈ Tleaf, the beliefs b(θi) in (29) become

b(θi) = αN (zi|si, σ2)[N (si|0, γ2σ2)]qi [N (si|0, ϵ2σ2)]1−qi [µdi (0)]
1−qi [µdi (1)]

qi

(B18)
and (B13) simplify to [see (B1b)]

βi(0) = α
1√

2πσ2
√
2πϵ2σ2

exp
(
−0.5

z2i
σ2 + σ2ϵ2

)
µdi (0) (B19a)

βi(1) = α
1√

2πσ2
√

2πγ2σ2
exp

(
−0.5

z2i
σ2 + σ2γ2

)
µdi (1) (B19b)

yielding βi = [βi(0), βi(1)]
T = α1ϕ(zi)⊙ µd

i .

Consequently, the mode θ̂i is computed as

θ̂i = argmax
θi

b(θi) =

{
[1, ŝi(1)]

T , βi(1) ≥ βi(0)

[0, ŝi(0)]
T , otherwise

(B20)

which follows from (B1a).

Note that the normalizing constants α and α1 in the above upward and downward messages and beliefs

have been set so that mi→π(i)(0) +mi→π(i)(1) = 1, mπ(i)→i(0) +mπ(i)→i(1) = 1, and βi(0) + βi(1) = 1

respectively.
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