21 research outputs found

    Rank Minimization over Finite Fields: Fundamental Limits and Coding-Theoretic Interpretations

    Full text link
    This paper establishes information-theoretic limits in estimating a finite field low-rank matrix given random linear measurements of it. These linear measurements are obtained by taking inner products of the low-rank matrix with random sensing matrices. Necessary and sufficient conditions on the number of measurements required are provided. It is shown that these conditions are sharp and the minimum-rank decoder is asymptotically optimal. The reliability function of this decoder is also derived by appealing to de Caen's lower bound on the probability of a union. The sufficient condition also holds when the sensing matrices are sparse - a scenario that may be amenable to efficient decoding. More precisely, it is shown that if the n\times n-sensing matrices contain, on average, \Omega(nlog n) entries, the number of measurements required is the same as that when the sensing matrices are dense and contain entries drawn uniformly at random from the field. Analogies are drawn between the above results and rank-metric codes in the coding theory literature. In fact, we are also strongly motivated by understanding when minimum rank distance decoding of random rank-metric codes succeeds. To this end, we derive distance properties of equiprobable and sparse rank-metric codes. These distance properties provide a precise geometric interpretation of the fact that the sparse ensemble requires as few measurements as the dense one. Finally, we provide a non-exhaustive procedure to search for the unknown low-rank matrix.Comment: Accepted to the IEEE Transactions on Information Theory; Presented at IEEE International Symposium on Information Theory (ISIT) 201

    Recovery of binary sparse signals from compressed linear measurements via polynomial optimization

    Get PDF
    The recovery of signals with finite-valued components from few linear measurements is a problem with widespread applications and interesting mathematical characteristics. In the compressed sensing framework, tailored methods have been recently proposed to deal with the case of finite-valued sparse signals. In this work, we focus on binary sparse signals and we propose a novel formulation, based on polynomial optimization. This approach is analyzed and compared to the state-of-the-art binary compressed sensing methods

    Advances in the recovery of binary sparse signals

    Get PDF
    Recently, the recovery of binary sparse signals from compressed linear systems has received attention due to its several applications. In this contribution, we review the latest results in this framework, that are based on a suitable non-convex polynomial formulation of the problem. Moreover, we propose novel theoretical results. Then, we show numerical results that highlight the enhancement obtained through the non-convex approach with respect to the state-of-the-art methods
    corecore