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ABSTRACT

In this paper we present F2OMP, a recovery algorithm

for Compressed Sensing over finite fields. Classical recovery

algorithms do not exploit the fact that a signal may belong

to a finite alphabet, while we show that this information

can lead to more efficient reconstruction algorithms. As

an application, we use the proposed algorithm to recover

sparse grayscale images, showing that performing CS op-

eration over a finite field can outperform classical recovery

algorithms from visual quality, memory occupation and com-

plexity point of view.

Index Terms— Finite Fields, Compressed Sensing, Or-

thogonal Matching Pursuit, Sparse Image Recovery

1. INTRODUCTION

Compressed Sensing (CS) [1, 2] is emerging in the recent

years as a novel signal acquisition technique. Under the hy-

pothesis of sparsity, CS allows to reduce the number of mea-

surement needed to acquire a signal. This result is achieved

by linear combinations of the signal as measurements. The

signal can be retrieved solving an underdetermined system

of equations. There is a large body of literature on practical

algorithms for the reconstruction of the signal from its mea-

surements. Many of them derive from linear programming,

as Lasso [3] or Basis Pursuit (BP) [4]. Less computationally

complex techniques, as Orthogonal Matching Pursuit (OMP)

[5] and Message Passing (MP) [6], are also used, even if they

are usually less accurate.

The use in CS of techniques derived from linear codes is

emerging as promising [7, 8] since it can provide some advan-

tages over the classical CS. However, these works exploit real

field measurements, while the study of CS over finite fields

has been left aside. Namely, while sensing and measurement

quantization of a real signals may cause loss of accuracy, per-

forming operations over finite fields avoids this issue, and lin-

ear codes techniques can be exploited for efficient signal re-

covery [9, 10]. The first paper that mentions the application

of CS to finite fields is [11], where the authors develop theo-

retical error exponent results. They calculate the probability

that there exists a signal, sparser than the input signal, that
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matches the measurements, using random finite field sensing

matrices. The authors in [10] develop theoretic results for sig-

nal recovery over finite fields studing the average error of both

dense and sparse matrices through an ideal �0 recovery, prov-

ing that sparse sensing matrices can be as good as dense ones.

While the previous papers are mostly theoretical, assessing

the possibilities offered by CS over finite fields, in [9] the au-

thors suggest to use parity matrices and syndrome decoding of

algebraic codes for tracking discrete-valued time-series data.

In particular, even if [9] hints that the knowledge that a signal

belongs to a finite alphabet should be exploited in the recon-

struction process, standard CS reconstruction algorithms are

unable to exploit this information.

In this paper, we show that knowledge of the finite na-

ture of the alphabet indeed leads to more efficient reconstruc-

tion algorithms. We present a new algorithm able to enforce

sparsity on a finite field, thereby increasing the probability

of signal recovery. Moreover, we show that performing CS

operation over a field larger than the alphabet increases the

recovery performance of the system. We dub this algorithm

F2OMP (Finite Field OMP), as it can be seen as a finite ver-

sion of the classical OMP [5]. As an example application, we

apply F2OMP to sparse grayscale images and show that it can

obtain lossless reconstruction with reduced memory occupa-

tion and computational complexity. Experiments of standard

CS techniques applied to this kind of images can be found in

[12], where the image was processed row-wise, while here we

reconstruct the entire image at once.

2. COMPRESSED SENSING AND FINITE FIELDS
We denote (column-)vectors and matrices by lowercase and

uppercase boldface characters, respectively. We denote the i-
th row and the j-th column of a matrix A as ai and aj respec-

tively (the former being a row-vector). The (i, j)-th element

of a matrix A is addressed as aij . The i-th element of a vector

v is vi. F is a generic Finite Field of size q, i.e. |F| = q. We

denote as || · ||i the �i norm of a vector.

The signal x to be acquired is represented as a vector of

length n over a field and has k non-zero elements. We sup-

pose that the nonzero elements of x belong to a certain al-

phabet A. We call y the vector of length m � n that stores

the measurements of x obtained through a multiplication by

a m × n matrix A, called sensing matrix, i.e. A x = y. The

goal of CS is to recover x even if only m measurements are
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Fig. 1: Evolution of the sensing matrix in F2OMP.

sensed, i.e knowing only y and A. This result can be achieved

solving the minimization problem

x̂ = argmin
x

||x||0 s.t. A x = y and x ∈ An. (1)

In the standard CS framework, the alphabet is infinite, hence

the operations are performed over R. However, if A is finite, it

is possible to map the elements of the alphabet in a finite field

that contains a number of elements not less than the alphabet

size, i.e. q ≥ |A|, such that A ⊆ F. For this reason, in

the following we will see any finite alphabet as a subset of a

suitable finite field.

3. PROPOSED ALGORITHM

Algorithm 1 F2OMP.

1: Initialize t = 0, y(0) = y, π= [1, 2, . . . , n]T , x̂ = zeros(n)

2: while (t < m) and (y
(t)
j �= 0 ∀j > t+ 1) do

3: while t < j ≤ n do
4: Zj ← {η ∈ F s.t. ∃i s.t. η = y

(t)
i (ai

j)
(−1)}

5: dj ← minα∈Zj∩A ||α−1aj − y(t)||0
6: j++

7: end while
8: g ← index of the minimizer of dj
9: swap(at+1, ag)

10: swap(πt+1, πg)

11: find h s.t. h ≥ t and ah
t+1 �= 0

12: swap(at+1, ah)

13: swap(y
(t)
t+1, y

(t)
h )

14: backsub(A, y(t), t)
15: t← t+ 1
16: end while
17: i← 1
18: while i ≤ m do
19: x̂πi ← y

(t)
i

20: i← i+ 1
21: end while

In this section we present a novel algorithm for the recov-

ery of compressed signals belonging to a finite alphabet. This

algorithm can be seen as a finite version of the classical OMP

[5], so it is called Finite Field OMP (F2OMP).

The aim of (1) is to find the sparsest solution to the system

A x = y, which has infinite solutions in R. On the contrary,

in F it has a finite (but huge) number of solutions. A selec-

tion has to be made among these solutions, and the sparsest

one has to be picked. If m linearly independent columns are

picked and the subsequent subsystem of equation is solved,

a unique solution will be found. To pick the columns that

will drive to the sparsest solution is a basic technique in CS

recovery.

Our algorithm picks columns and solves the system on the

fly by iteratively diagonalizing A. At step t, A is a partially

diagonalized matrix, as shown in Fig. 1 (a). In particular, the

first t columns of A are diagonalized. To begin with, the col-

umn of A nearest to y(t) is picked (how to find this column

will be explained later) and swapped with the (t + 1)-th one

(Fig. 1 (b)). If such a column cannot be found, the algorithm

fails. In order to enlarge the diagonalized part of A, the new

(t + 1)-th column is processed via back substitution. How-

ever, the diagonalization can be performed only if at+1
t+1 �= 0.

If at+1
t+1 = 0, a row ah, h > t+1 is found such that aht+1 �= 0,

and is swapped with the t + 1-th one (Fig. 1 (c)). A back

substitution is performed to cancel out all the nonzero ele-

ments of at+1 but the one on the diagonal. At the end of the

back substitution, at+1 has a unique nonzero element in cor-

respondence to the diagonal of A. We remark that the same

swapping and back substitution operations are applied at the

same time to the measurement vector y(t). As a result, the

diagonalized part of A has grown of 1 row and column (Fig.

1 (d)), and a new step of the algorithm can be performed. If

the algorithm converges, the first t elements of y(t) contain at

most t nonzero elements of x̂, while the last m − t elements

of y(t) are equal to zero. Hence, the iterations stop when the

last m − t elements of y(t) have been nullified. The solution

for the system of equations is obtained by assigning the first t
elements of y(t) to t elements of x̂ in the correct positions and

zero to the remaining n−t. This assignment can be performed

storing the column swap performed by algorithm, since a col-

umn swap can be seen as a swap between elements of x̂. The

pseudo-code of the algorithm is presented as Algorithm 1.

3.1. Enforcing Sparsity
Finding the column of A nearest to y(t) is the key point of the

algorithm. Working over R, OMP picks the column j mini-

mizing the distance dj = min
α∈R

(||αaj − y(t)||22), α ∈ R. It is

known that setting α = ajy(t)/||aj ||22 allows one to find the

minimizer dj for each column [13]. However, the �2 norm

is undefined over F, where the Hamming distance can be

used, instead. Even if the Hamming distance is not properly

a norm, it defines a notion of sparsity that can be exploited

in the process. The distance among columns is calculated as
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dj = min
α∈F

(||αaj−y(t)||0). For this expression, no minimizing

value of α is known. A solution is to try with all the elements

of F, leading the algorithm to depend on the field size. How-

ever, the majority of the elements of F can be excluded from

the search. In fact, α can lower the value of dj only if there

exists i such that αaij − y
(t)
i = 0, i.e. when α = y

(t)
i (aij)

−1.

This is due the fact that the Hamming distance is given by

the number of nonzero elements of the difference between aj
and y(t). To lower this distance, the number of zeroed ele-

ments of the difference must be increased by α. As a conse-

quence, α has to belong to the set Zj = {η ∈ F s.t. ∃i s.t.

η = y
(t)
i (aij)

−1}. By construction, |Zj | ≤ m, and the search

for α is computationally bounded by the number of the mea-

surements. Moreover, since y can be seen as a weighted sum

of k columns of A, where the weights belongs to A, we sug-

gest an additional constraint, namely that α belong to A. As a

consequence, the final set of the possible values of α is given

by Zj ∩ A. Hence, instruction 5 of Algorithm 1 follows. We

note that classical recovery algorithms for finite fields, like

Message Passing (MP) [6], depend on the size of the field,

becoming unfeasible in large finite fields [14]. On the con-

trary, it can be shown (even if we omit to include these results

due to space limitations) that the larger the field, the better the

performance of the proposed algorithm, up to a certain size,

as theoretically proved in [11].

4. SIMULATION RESULTS
The proposed algorithm gives best results in presence of

sparse sensing matrices. The use of these matrices is emerg-

ing as an actual possibility for both real [6, 8] and finite [10]

fields. The sparse sensing matrices A are generated over

Fm×n as follows. At the beginning, the number c of nonzero

elements of A is fixed; in our experiments, we set c = 3n.

The positions of the nonzero entries of A are drawn such that

each row and each column contain approximately c/m and

c/n entries, respectively. For each of the c positions of the

nonzero elements, a value is extracted uniformly over F\{0},

while the remaining elements are set to zero. Unlike [9],

F2OMP does not impose any constraint on m and n, allowing

greater flexibility in the choice of system parameters. The

result of this process can be seen as a parity check matrix

of an irregular nonbinary LDPC code [15]. The finite fields

we work on are extensions of GF (2), i.e., q is a power of

2, hence its elements can be seen as binary vectors of length

log2 q. Moreover, the acceleration technique for MP decod-

ing of nonbinary LDPC codes [14] can be applied, and a fair

comparison with our proposal can be performed. The entries

of the real sensing matrix used for comparison are drawn

independently from a Gaussian Distribution N (0, 1/m) [13].

First, we test our algorithm with synthetically generated

signals, to study the impact of each system parameter on

the recovery performance. Then, we use it to recover sparse

grayscale images, comparing the results with the ones ob-

tained through CS recovery over R.

4.1. Synthetically generated sparse signals
Concerning the first set of experiments, the nonzero elements

of x are uniformly drawn in A. The performance metric is

the probability of recovering the correct signal. In the finite

fields, we will consider a signal as correctly recovered only

if the recovered signal and the original one are identical. In

the real field, a signal will be considered correctly recovered

if the distance between the recovered signal and the original

one is less than ε = 0.001. Each curve is the result of 1000

trials. We run multiple simulations to find the finite field size

that optimizes the performance of our algorithm. It turned

out that the recovery performance increases until a bound that

is reached around q = 216. In this case, each value of the

measurement vector can be stored in 2 bytes of memory. For

this reason, in the following the size of F will be q = 216.

To begin with, we present a comparison between real and

finite fields in the more general case of full alphabet. For the

finite field signal, we set A = F\{0}. For the real field, the

elements of A are q − 1 real numbers drawn according to

N (0, 1), and OMP algorithm [5] is used to recover the sig-

nal. In Fig. 2 the recovery probability is plotted against the

sparsity ratio k/m. As shown, the behavior of the algorithms

for the finite and the real case is similar, but the proposed

F2OMP always outperforms OMP. We must point out that in

the real field the measurements are stored as 4-bytes floating

point values, hence our proposed algorithm obtains better per-

formance with a significant memory saving.

Another option to recover the signal over a finite field is to

use MP algorithm [14]. This algorithm shares the signals and

sensing matrices with F2OMP. In Fig. 3 we show the behav-

ior of MP for different values of q. We can see that for q = 28

MP outperforms F2OMP for large values of k. However, it

must be pointed out that the computational complexity of MP

grows quadratically with the size q of the field. In fact, while

it takes few seconds to F2OMP to recover the signal, even for

q = 216, the good performance showed for q = 28 are ob-

tained running MP for several hours. A fair comparison at

q = 216 would lead to an exponential growth of the running

time, making MP impractical for large fields.

After addressing the performance of our proposed algo-

rithm in the case of complete alphabet, we now investigate

the advantage provided by the knowledge of the alphabet. In

this case, we let A � F. OMP is unable to exploit this infor-

mation, and therefore its performance does not change. For

the competing MP [14], we developed a version of the algo-

rithm that exploits knowledge of the finite alphabet. This can

be done by zeroing the probability that an element does not

belong to A (which can be done in [14] by setting p
(0)
v (x) = 0

if x /∈ A). Even with this modification, the performance of

MP remains the same, proving the optimality of the original

algorithm. In Fig. 4 the recovery probability of F2OMP is

shown for various sizes of A. It is possible to notice that the

performance depends on the size of the alphabet: the smaller

the size, the better the performance. In practice, if the alpha-
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Fig. 2: Signal recovery probability

for various values of m for algorithms

OMP and F2OMP, with n = 500.
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algorithms MP and F2OMP for various
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Fig. 4: Signal recovery probability of

F2OMP for various alphabet size, with

n = 500 and m = 150.

(a) Original (b) F2OMP, m=2100 (c) OMP, m=2100

(d) OMP, m=2700 (e) OMP, m=2800 (f) OMP, m=3000

Fig. 5: Original and reconstructed images, |A| = 16

bet is known with high precision (hence its size is small), this

information can be exploited to increase the signal recovery

probability. To summarize, the knowledge of A does not im-

prove the performance of the classical recovery algorithms for

finite and real fields. On the contrary, our proposed algorithm

is indeed able to exploit this knowledge and achieves a higher

recovery probability.

4.2. Grayscale sparse images
In this section, we compare the performance of F2OMP and

OMP when applied to grayscale sparse images, like the one

depicted in Fig. 5a. This image has a size of 95 × 95 pixel

(hence n = 9025) and has a sparsity k/n of roughly 10% .

Each non zero pixel can assume a value between 1 and 255.

We compare the performance of F2OMP and OMP con-

sidering different sizes of the alphabet (|A| = 16 and 256).

Restricting the alphabet size to 16 corresponds to a quanti-

zation of pixel intensities to 16 gray levels. This operation

does not imply a visual quality loss, as shown in Fig. 5b. For

F2OMP, we set the size of the field q to 216. It must be con-

sidered that a successful reconstruction by F2OMP is always

lossless, i.e., the Mean Square Error (MSE) is equal to 0. On

the other hand, for OMP we report the reconstruction MSE.

We consider the results of the reconstruction from measure-

Table 1: Reconstruction MSE. F2OMP vs. OMP. “0” means

lossless reconstruction. “-” means unable to reconstruct

|A| = 16, k = 1026 |A| = 256, k = 1118
m F2OMP OMP F2OMP OMP

2100 0 4.02e3 - 4.08e3

2500 0 2.50e3 - 2.53e3

2700 0 1.35e3 0 1.29e3

2800 0 3.58e2 0 2.26e2

3000 0 5.96e0 0 1.88e-1

ments quantized on 16 bits per measurement (bpm), having

the same memory occupation as the q = 216 F2OMP case.

We omit to report the results of the reconstruction from un-

quantized measurements, since the performance loss due to

quantization on 16 bits is unnoticeable. The obtained results

are summarized in Table 1.

The results confirm the ones obtained with synthetically

generated data. With |A| = 16, F2OMP is able to reconstruct

with no error using only m = 2100 measurements, while for

OMP the quality of the reconstruction, depicted in Fig. 5c,

corresponds to MSE=4.02e3. To reach an acceptable visual

quality, m = 2800 measurements are needed (Fig. 5e), while

to obtain an almost lossless reconstruction, at least m = 3000
measurements are required (Fig. 5f). On the other hand, when

all the 256 gray levels are kept, the F2OMP requires slightly

more measurements to reconstruct the image (m = 2700),

while OMP performance is not affected by the alphabet size.

5. CONCLUSIONS
In this paper we presented F2OMP, a recovery algorithm for

Compressed Sensing over finite fields. The complexity of

F2OMP does not depend on the alphabet size. We showed

that the knowledge of the nature of the alphabet can be ex-

ploited in the recovery process. In particular, if the opera-

tions are performed over a field larger than the alphabet, the

recovery performance of the algorithm improve. A compari-

son between real and finite fields CS was performed, for both

sinthetically generated data and for sparse greyscale images,

showing that F2OMP always outperforms OMP, with reduced

complexity.
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