9 research outputs found

    Terahertz time-gated spectral imaging for content extraction through layered structures

    Get PDF
    Spatial resolution, spectral contrast and occlusion are three major bottlenecks for non-invasive inspection of complex samples with current imaging technologies. We exploit the sub-picosecond time resolution along with spectral resolution provided by terahertz time-domain spectroscopy to computationally extract occluding content from layers whose thicknesses are wavelength comparable. The method uses the statistics of the reflected terahertz electric field at subwavelength gaps to lock into each layer position and then uses a time-gated spectral kurtosis to tune to highest spectral contrast of the content on that specific layer. To demonstrate, occluding textual content was successfully extracted from a packed stack of paper pages down to nine pages without human supervision. The method provides over an order of magnitude enhancement in the signal contrast and can impact inspection of structural defects in wooden objects, plastic components, composites, drugs and especially cultural artefacts with subwavelength or wavelength comparable layers

    Analysis of Moving Object Imaging from Compressively Sensed SAR Data in the Presence of Dictionary Mismatch

    Get PDF
    We present compressed sensing (CS) synthetic aperture radar (SAR) moving target imaging in the presence of dictionary mismatch. Unlike existing work on CS SAR moving target imaging, we analyze the sensitivity of the imaging process to the mismatch and present an iterative scheme to cope with dictionary mismatch. We analyze and investigate the effects of mismatch in range and azimuth positions, as well as range velocity. The analysis reveals that the reconstruction error increases with the mismatch and range velocity mismatch is the major cause of error. Instead of using traditional Laplacian prior (LP), we use Gaussian-Bernoulli prior (GBP) for CS SAR imaging mismatch. The results show that the performance of GBP is much better than LP. We also provide the Cramer-Rao Bounds (CRB) that demonstrate theoretically the lowering of mean square error between actual and reconstructed result by using the GBP. We show that a combination of an upsampled dictionary and the GBP for reconstruction can deal with position mismatch effectively. We further present an iterative scheme to deal with the range velocity mismatch. Numerical and simulation examples demonstrate the accuracy of the analysis as well as the effectiveness of the proposed upsampling and iterative scheme

    Methods for MRI RF Pulse Design and Image Reconstruction.

    Full text link
    This thesis describes methods to improve magnetic resonance imaging (MRI) reconstruction and system calibration, namely, B1 field mapping which is to measure the spatial distribution of the magnetic field produced by radiofrequency (RF) coils. We also developed methods of RF pulse design and steady-state imaging sequence design for applications such as fat suppression and magnetization transfer contrast imaging. There are five projects: (a) We developed a framework of iterative image reconstruction with separate magnitude and phase regularization where compressed sensing is used for the magnitude and special phase regularizers that are compatible with phase wrapping are designed for different applications. The proposed method significantly improves the phase image reconstruction while accelerates the data acquisition. (b) A modified Bloch-Siegert B1 mapping was developed to efficiently acquire both magnitude and phase of the B1 maps of multi-channel RF transmission systems. A regularized method was developed to jointly estimate the B1 magnitude and phase to reduce low signal-to-noise ratio regions. Furthermore, we developed a method for coil combination optimization for this multi-channel B1 mapping sequence based on Cramer-Rao lower bound analysis, to improve the raw data quality for B1 estimation. (c) We developed a four dimensional spectral-spatial fat saturation pulse that uniformly suppresses fat without exciting water in the presence of main magnetic field and B1 field inhomogeneity. At 3T, we showed that the proposed pulse can work more robustly than the standard spectrally selective fat saturation pulse with half the pulse length. (d) We applied the proposed fat saturation pulse to spoiled gradient echo sequence and small-tip fast recovery imaging sequence, with a modified RF spoiling scheme. We tested these proposed sequences on clinical applications like cartilage imaging and MR angiography and demonstrated their ability to simultaneously produce fat suppression and magnetization transfer contrast. We show that the proposed sequences can reduce the minimal repetition time and potentially lower the overall RF power deposition. (e) We designed a small tip fast recovery imaging sequence combined with a post-processing method to separate water from fat and remove banding artifacts simultaneously.PhDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107071/1/zhaofll_1.pd

    Enabling Real-Time Terahertz Imaging With Advanced Optics and Computational Imaging

    Get PDF
    La bande des térahertz est une région particulière du spectre électromagnétique comprenant les fréquences entre 0.1 THz à 10 THz, pour des longueurs d’onde respectives de 3 mm à 30 um. Malgré tout l’intérêt que cette région a suscité au cours de la dernière décennie, de grands obstacles demeurent pour une application plus généralisée de la radiation THz dans les applications d’imagerie. Cette thèse aborde le problème du temps d’acquisition d’une image THz. Notre objectif principal sera de développer des technologies et techniques pour permettre l’imagerie THz en temps réel. Nous débutons cette thèse avec une revue de littérature approfondie sur le sujet de l’imagerie THz en temps réel. Cette revue commence par énumérer plusieurs sources et détecteurs THz qui peuvent immédiatement être utilisés en imagerie THz. Nous détaillons par la suite plusieurs modalités d’imagerie développés au cours des dernières années : 1) Imagerie THz en transmission, en réflexion et de conductivité, 2) imagerie THz pulsée, 3) imagerie THz par tomographie computationnelle et 4) imagerie THz en champ proche. Nous discutons par la suite plus en détail à propos de technologies habilitantes pour l’imagerie THz en temps réel. Pour cela, nous couvrons trois différents axes de recherche développés en littérature : 1)Imagerie en temps réel de spectroscopie THz dans le domaine du temps, 2) caméras THz et 3) imagerie en temps réel avec détecteur à pixel unique. Nous présentons ensuite le système d’imagerie que nous avons développé pour les démonstrations expérimentales de cette thèse. Ce système est basé sur la spectroscopie THz en temps réel et permet donc d’obtenir des images hyperspectrales en amplitude et en phase. Il utilise des antennes photoconductrices pour l’émission et la détection de la radiation THz. En outre, le détecteur est fibré, ce qui permet de le déplacer spatialement pour construire des images. Nous couvrons aussi brièvement plusieurs techniques de fabrication avancées que nous avons utilisées : impression 3D par filament, stéréolithographie, machinage CNC, gravure/découpe laser et transfert de métal par toner. Nous portons ensuite notre attention à l’objectif principal de cette thèse à travers trois démonstrations distinctes. Premièrement, nous concevons des composants THz à faibles pertes en utilisant des matériaux poreux. L’absence de détecteurs THz ultra-sensibles implique que les pertes encourues dans un système d’imagerie sont hautement indésirables. En effet, un moyennage temporel est généralement fait pour extraire de faibles signaux THz sévèrement enfouis sous le bruit technique. Ceci a pour impact de diminuer le nombre d’images à la seconde. ----------Abstract The terahertz band is a region of the electromagnetic spectrum comprising frequencies between 0.1 THz to 10 THz for respective wavelengths of 3 mm to 30 um. Despite all the interest and potential generated in the past decade for applications of this spectral band, there are still major hurdles impeding a wider use of THz radiation for imaging. This thesis addresses the problem of image acquisition time. Our main objective is to develop technologies and techniques to achieve real-time THz imaging. We start this thesis with a comprehensive review of the scientific literature on the topic of realtime THz imaging. This review begins by listing some off-the-shelf THz sources and detectors that could be readily used in THz imaging. We then detail some key imaging modalities developed in the past years: 1) THz transmission, reflection and conductivity imaging, 2) THz pulsed imaging, 3) THz computed tomography, and 4) THz near-field imaging. We then discuss practical enabling technologies for real-time THz imaging: 1) Real-time THz timedomain spectroscopy imaging, 2) THz cameras, and 3) real-time THz single-pixel imaging. We then present our fiber-coupled THz time-domain spectroscopy imaging setup. This system is used throughout the thesis for experimental demonstrations. We also briefly overview many advanced fabrication techniques that we have used, namely fused deposition modeling,stereolithography, CNC machining, laser cutting/engraving and metal transfer using toner. We then turn to the main objective of this thesis with three distinct demonstrations. First, we design low-loss THz components using porous media. The losses incurred in the imaging system are highly undesirable due to the lack of sensitive THz detectors. Indeed, time averaging is generally performed in order to retrieve THz signals severely buried under noise,which in return reduce the framerate. We propose to use low-refractive index subwavelength inclusions (air holes) in a solid dielectric material to build optical components. We show that these components have smaller losses than their all-solid counterparts with otherwise identical properties. We fabricate a planar porous lens and an orbital angular momentum phase plate, and we use our imaging system to characterize their effects on the THz beam. Second, we demonstrate a spectral encoding technique to significantly reduce the required number of measurements to reconstruct a THz image in a single-pixel detection scheme
    corecore