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We present compressed sensing (CS) synthetic aperture radar (SAR)moving target imaging in the presence of dictionarymismatch.
Unlike existing work on CS SAR moving target imaging, we analyze the sensitivity of the imaging process to the mismatch and
present an iterative scheme to cope with dictionary mismatch. We analyze and investigate the effects of mismatch in range and
azimuth positions, as well as range velocity. The analysis reveals that the reconstruction error increases with the mismatch and
range velocity mismatch is the major cause of error. Instead of using traditional Laplacian prior (LP), we use Gaussian-Bernoulli
prior (GBP) for CS SAR imaging mismatch.The results show that the performance of GBP is much better than LP. We also provide
the Cramer-Rao Bounds (CRB) that demonstrate theoretically the lowering of mean square error between actual and reconstructed
result by using the GBP. We show that a combination of an upsampled dictionary and the GBP for reconstruction can deal with
position mismatch effectively. We further present an iterative scheme to deal with the range velocity mismatch. Numerical and
simulation examples demonstrate the accuracy of the analysis as well as the effectiveness of the proposed upsampling and iterative
scheme.

1. Introduction

According to compressed sensing (CS) [1–3] theory, ran-
domly undersampled signals can be reconstructed using
linear programming [1], orthogonalmatching pursuit (OMP)
[4], and Bayesian methods [5–7]. The advantages gained
by using CS are hardware simplification [8], reduction in
equipment cost, data size, and acquisition time [9, 10],
and deblurring and enhancing resolution from incomplete
measurements [11].

Compressed sensing for synthetic aperture radar (SAR)
is an active area of research for remote sensing. The use of
CS based reconstruction can have an impact on the design
of high resolution SAR systems as these systems encounter
hardware design problems and require significant processing
[12]. CS has been applied for imaging of static objects in
through-the-wall SAR imaging [13–15], tomographic SAR
imaging [16–18], and SAR image formationwith reduced data
[19], where advantage is taken of the fact that the observed

scenes are sparse. The static scenes may not always be sparse.
The scenes containing a few strong intensity moving scatter-
ers in a weak stationary background present an opportunity
for CS application as they are inherently sparse.Thesemoving
targets suffer from position displacement and defocusing
due to motion [20]. The use of CS can help in reducing
acquired data size as well as simultaneous motion parameter
estimation imagingwith reduced data. Sparsity can be further
enhanced using clutter cancelationwhere the static parts of an
observed scene are suppressed [21].

Compressed sensing for SAR moving object imaging has
become an active area of research. References [22, 23] apply
CS for moving target parameter estimation by defining a
dictionary based on the response of moving objects for dif-
ferentmotion parameters. Both of these references use clutter
cancelation to enhance sparsity. Reference [24] makes use of
distributed CS applied to along-track interferometric SAR
data for moving target imaging and shows that distributed
CS can offer better performance with less samples compared
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Table 1: Comparison of existing references.

References SAR moving target Prior Dictionary mismatch Remarks

[6] No GBP Yes Superior performance of GBP over LP is shown by
simulations

[13, 14] No LP No Apply CS for through-the-wall imaging

[15] No LP Yes
Apply CS for through-the-wall imaging.
Performance degradation due to pixel mismatch and
wave propagation velocity shown by simulations

[16–18] No LP No Apply CS for tomographic SAR imaging
[19] No LP No Apply CS for focusing of static scenes

[7] No GBP Yes Fast implementation of GBP reconstruction shows
superior performance by simulations

[21] No LP No Suggest clutter cancelation to enhance sparsity of a
scene containing moving targets

[22] Yes LP No Apply CS for motion estimation

[23] Yes LP Yes
Apply CS for motion estimation, performance
degradation due to range velocity mismatch shown
by simulations

[24] Yes LP No Apply distributed CS for motion estimation

[25] Yes LP Yes
Apply CS for motion estimation; simulations show
no performance degradation due to velocity
mismatch

[26, 27] No LP Yes Performance degradation due to dictionary
mismatch shown by simulations and theory

to traditional CS. Reference [25] uses CS for moving target
parameter estimation for mono- and multistatic SAR con-
figurations and simulated data. These references show that
CS can achieve imaging of moving objects as well as moving
object parameter estimation when SAR data are sampled at a
rate less than the traditional Nyquist sampling rate.

Compressed sensing reconstruction algorithms use a
dictionary in which the reconstructed signal is assumed to be
sparse. However, the dictionary in which the signal is actually
sparsemay be different and the resulting dictionarymismatch
causes a performance degradation [26, 27]. In order to apply
CS for practical applications, it is necessary to study the
reconstruction performance degradation in the presence of
dictionary mismatch. Reference [26] shows that dictionary
mismatch can be seen equivalent to multiplicative noise. It
also shows that reconstruction error increases linearly with
mismatch. Reference [27] considers the effect of dictionary
mismatch in CS reconstruction. It shows that, in case of using
a Fourier dictionary, reconstruction performance degrades
considerably when a mismatch exists. Due to this reason,
it recommends examining the effects of mismatch on radar
imaging. Reference [15] has shown performance degradation
by means of imaging examples for static targets in the
presence of mismatch in position and wave propagation
velocity. The authors in [15] also state that they are extending
the initial results presented in [28] for dealing with position
mismatch in through-the-wall imaging.

According to the best of our knowledge, dictionary
mismatch analysis has not been done theoretically for CS
moving target SAR imaging in the presence of position and
range velocity mismatch. A summary of the main features of

the existing references is given in Table 1. It shows that, in
the existing literature, the theoretical analysis of the effects
of dictionary mismatch for moving target CS SAR imaging
have not been carried out. Therefore, it remains an open
problem. It further shows that a prior other than Laplacian
prior (LP), for example, Gaussian-Bernoulli prior (GBP), for
CS moving target imaging has not been used. Similarly, a
theoretical analysis to show the advantage of the prior in
dealing with dictionary mismatch is also missing. In [29], we
have partially studied this problem and its effects for SAR
and inverse SAR.We showed that dictionary generation using
upsampled parameters is required to deal with errors arising
due to mismatch in positions and range velocity.

The emphasis of this paper is to show the performance
degradation in case of a target moving in the range direction.
The dictionary mismatch arising due to discretization and
dictionary size considerations causes performance degrada-
tion in terms of mean square error (MSE) between actual and
reconstructed results, especially when there is a range velocity
mismatch. We examine reasons for this degradation and also
show theoretically and experimentally that using GBP for
CS reconstruction compared to the traditionally used LP can
compensate for some amount ofmismatch.Themotivation of
using a different prior is to make use of extra information in
improving reconstructed image quality as shown in [30]. We
propose to deal with CS SAR moving target imaging in the
presence of dictionary mismatch due to positions and range
velocity. The main contributions of this paper are as follows.

(1) We analyze dictionary mismatch and its effects the-
oretically, show MSE calculated from simulated SAR
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data for different types of mismatch in range and
azimuth pixels as well as range velocity, and give
parameter resolution limits for maintaining a reason-
able level of reconstruction accuracy.We show thatCS
SAR moving target imaging is very sensitive to range
velocity mismatch.

(2) We analyze the problem by means of Cramer-Rao
Bounds (CRB) and show theoretically that recon-
struction with Gaussian-Bernoulli prior (CSGBP)
instead of traditional Laplacian prior (CSLP) can deal
with some mismatch effectively.

(3) We present simulation results using CSGBP recon-
struction and show that its use can lead to lowerMSE,
especially when the dictionary mismatch is small.
This can be used to deal with position mismatch and
reduce upsampling in positions that is required to
counter mismatch effects.

(4) We also propose to reconstruct in the presence of
range-velocity mismatch using an iterative scheme,
where dictionaries with different range velocities are
created efficiently. The contrast of the reconstructed
result is maximized.

We would also like to point out that we deal specifically
with the case of pulsed SAR. Any extension of dictionary
mismatch effects and parameter resolution calculations to
other types of SAR will need to take into account the
difference in imaging mechanism; for example, in case of
continuous wave SAR, it is known that range velocity creates
a shift in the range direction, which is absent in pulsed
SAR.Therefore, results for mismatch analysis and resolutions
in range position and range velocity will need to take this
additional shift into account.

This paper is organized as follows. Section 2 presents
the data model and formulation of moving target velocity
estimation problem in case of CS SAR. Section 3 analyzes the
effects of different kinds of dictionarymismatch, that is, range
and azimuth positions and range velocity on CS SARmoving
target imaging. Section 4 presents numerical and imaging
examples to present the effects of dictionary mismatch in
terms of MSE as well as the accuracy of the analysis and the
effectiveness of the proposed method. Conclusions are given
in Section 5.

2. System Model and Problem Formulation

In this paper, 𝑥 denotes a scalar, x denotes a vector, and X
denotes a matrix. We use X𝐻 and X𝑇 to denote conjugate
transpose and transpose ofX, respectively.The same notation
is used for Greek characters; that is, 𝜎 denotes a scalar, 𝜎
denotes a vector, andΣ denotes amatrix.We useΣ𝐻 andΣ𝑇 to
denote conjugate transpose and transpose of Σ, respectively.
The function diag(x) represents a function that converts a
vector x of size 𝑁

𝑡
× 1 into a diagonal matrix of size 𝑁

𝑡
× 𝑁
𝑡

and det(X) represents the determinant of the matrix X.

Synthetic aperture radar consists of an antenna mounted
on a moving platform [31]. A pulsed SAR sends electromag-
netic pulse 𝑝(𝑡) at a carrier frequency 𝑓

𝑐
and a chirp rate 𝐾.

The pulse length is denoted by 𝑇
𝑝
. This pulse is given as

𝑝 (𝑡) = rect( 𝑡

𝑇
𝑝

) exp (𝑗2𝜋𝑓
𝑐
𝑡 − 𝑗𝜋𝐾𝑡

2
) , (1)

where

rect( 𝑡

𝑇
𝑝

) = 1, if 0 ≤ 𝑡 ≤ 𝑇
𝑝

= 0, otherwise,
(2)

and 𝑡 = 𝑡
1
, 𝑡
2
, 𝑡
3
, . . . , 𝑡

𝑁
𝑟

. The signals are reflected from each
scatterer in the observed scene. Let 𝜎0 be a sparse vector of
size 𝑁

𝑡
× 1 that contains reflectivities for each point in the

scene having different motion parameters. Ψ0 is an 𝑁
𝑠
× 𝑁
𝑡

matrix in which the signal is actually sparse and contains
response of moving targets for every point in the scene with
each considered motion parameter. Let Φ be a sampling
matrix of size𝑀×𝑁

𝑠
, where𝑀 < 𝑁

𝑠
.This represents the case

where the number of measurements is less than the required
sampling rate due to data loss or intentionally reduced
data acquisition to simplify the acquisition hardware [10],
such as analog-to-digital converter. With different sampling
configurations, one can get reasonable image reconstruction
[13]. In this paper, we use undersampling in range direction
as measurement operator. The raw data signal model can be
written in one-dimensional form as [29]

s0 = ΦΨ0𝜎0 + 𝜀, (3)

where 𝜀 denotes measurement noise. Ψ0 contains the
response of each moving point in 1D form. This response for
𝑛th moving point having 𝑘th range velocity is given as [29]

s𝑘
𝑛
= [𝑠
𝑘

𝑛
(𝑡
1
, 𝜏
1
) , 𝑠
𝑘

𝑛
(𝑡
2
, 𝜏
1
) , . . . , 𝑠

𝑘

𝑛
(𝑡
𝑁
𝑟

, 𝜏
1
) ,

𝑠
𝑘

𝑛
(𝑡
1
, 𝜏
2
) , 𝑠
𝑘

𝑛
(𝑡
2
, 𝜏
2
) , . . . , 𝑠

𝑘

𝑛
(𝑡
𝑁
𝑟

, 𝜏
2
) , . . . ,

𝑠
𝑘

𝑛
(𝑡
1
, 𝜏
𝑁
𝑦

) , 𝑠
𝑘

𝑛
(𝑡
2
, 𝜏
𝑁
𝑦

) , . . . , 𝑠
𝑘

𝑛
(𝑡
𝑁
𝑟

, 𝜏
𝑁
𝑦

)]

𝑇

,

(4)

where

𝑠
𝑘

𝑛
(𝑡
𝑙
, 𝜏
𝑚
) = 𝑝(𝑡

𝑙
−

2𝑑
𝑘

𝑛
(𝜏
𝑚
)

𝑐

)

= rect(
𝑡
𝑙
− 2𝑑
𝑘

𝑛
(𝜏
𝑚
) /𝑐

𝑇
𝑝

) exp {−𝑗𝑘
𝑐
𝑑
𝑘

𝑛
(𝜏
𝑚
)}

× exp
{

{

{

−𝑗𝜋𝐾(𝑡
𝑙
−

2𝑑
𝑘

𝑛
(𝜏
𝑚
)

𝑐

)

2

}

}

}

,

(5)

𝑑
𝑘

𝑛
(𝜏
𝑚
) = √(𝑥

𝑛
− V𝑘
𝑥
𝜏
𝑚
)
2
+ ℎ
2
+ (𝑦
𝑛
− 𝑉𝜏
𝑚
)
2
.

(6)
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The size of s𝑘
𝑛
is 𝑁
𝑠
× 1. Ψ0 is generated for initial velocity

V
𝑥𝑖

and final velocity V
𝑥𝑓

for a total number of 𝑁V
𝑥
range

velocities.The dictionary element corresponding to a velocity
V1
𝑥
is as follows:

Ψ0
1
= [s1
1
⋅ ⋅ ⋅ s1
𝑁
𝑠

] . (7)

The final dictionary Ψ0 is stored in an 𝑁
𝑠
× 𝑁
𝑡
matrix given

as

Ψ0 = [Ψ0
1
| ⋅ ⋅ ⋅ | Ψ0

𝑁V
𝑥

] . (8)

Due to undersampling, the problem of recovering 𝜎0 from
s0 becomes an underdetermined problem. We can solve this
problem by including a-priori information for getting the
solution; for example, select a solution such that the number
of nonzero coefficients is the smallest. This can be expressed
as follows:

min 󵄩
󵄩
󵄩
󵄩
𝜎0

󵄩
󵄩
󵄩
󵄩0

subject to s0 = ΦΨ0𝜎0. (9)

The number of nonzero coefficients is denoted by ‖𝜎0‖0,
known as 𝑙

0
norm. However, this minimization problem is

nonconvex, which means that finding a global solution is
difficult or not guaranteed. In addition, it is computationally
difficult to solve as it requires search over all possible
combinations of the columns of ΦΨ0. To deal with these
issues, we use 𝑙

1
norm minimization. This minimization is

a convex approximation of the 𝑙
0
norm minimization if a

property known as restricted isometric property (RIP) is
satisfied. This property essentially means that the columns
formed by the matrix ΦΨ0 are sufficiently decorrelated with
one another. The problem can be expressed as

min 󵄩
󵄩
󵄩
󵄩
𝜎0

󵄩
󵄩
󵄩
󵄩1

subject to s0 = ΦΨ0𝜎0. (10)

In order to obtain a solution based on 𝑙
1
normminimization,

we use Laplacian prior (LP) [32] as follows:

𝜎0 ∼ exp (−
󵄩
󵄩
󵄩
󵄩
𝜎0

󵄩
󵄩
󵄩
󵄩1
) . (11)

If noise is Gaussian with variance 𝑠2
𝜀
, the solution is obtained

by

𝜎̂0 = argmax
𝜎0

𝑝 (𝜎0 | s0)

= argmax
𝜎0

𝑝 (s0 | 𝜎0) 𝑝 (𝜎0) ,
(12)

where

𝑝 (s0 | 𝜎0) =

1

2𝑠
𝜀
2

exp {−
󵄩
󵄩
󵄩
󵄩
s0 −ΦΨ0𝜎0

󵄩
󵄩
󵄩
󵄩

2

2
} . (13)

The solution can be written as

𝜎̂0 = argmin
𝜎0

{− log𝑝 (s0 | 𝜎0) − log𝑝 (𝜎0)} (14)

that leads to

𝜎̂0 = argmin
𝜎0

󵄩
󵄩
󵄩
󵄩
s0 −ΦΨ0𝜎0

󵄩
󵄩
󵄩
󵄩

2

2
+ 𝜆

󵄩
󵄩
󵄩
󵄩
𝜎0

󵄩
󵄩
󵄩
󵄩1
. (15)

Thus, by using LP, we include the 𝑙
1
norm minimization in

the solution. The parameter 𝜆 gives weight to a priori sparse
information. Equation (15) can be solved using different
recovery methods, for example, linear programming and
OMP. The reconstructed result 𝜎̂0 is of size 𝑁

𝑡
× 1 and can

be written as

𝜎̂0 = [𝜎̂
1

0,1
⋅ ⋅ ⋅ 𝜎̂
1

0,𝑁
⋅ ⋅ ⋅ 𝜎̂
𝑁V
𝑥

0,1
⋅ ⋅ ⋅ 𝜎̂
𝑁V
𝑥

0,𝑁
]

𝑇

, (16)

where each entry of 𝜎̂0 shows the reconstructed reflectivity
for each point in the scene for one velocity value; for example,
𝜎̂
1

0,1
represents the reflectivity for a point at position (𝑟

1
, 𝑦
1
)

and having a velocity V1
𝑥
. The result can be rearranged into

𝑁V
𝑥
2D matrices, each having a size 𝑛

𝑟
× 𝑛
𝑦
, to show the

estimated reflectivities at different velocities for SAR. The
matrices of size 𝑛

𝑟
× 𝑛
𝑦
may also be summed to give a final

focussed reconstructed result Σ̂0, shown as follows:

Σ̂0 =

𝑁V
𝑥
−𝑁

∑

𝑖=0

𝑓 (𝜎̂0 (𝑖 × 𝑁 + 1) , 𝜎̂0 (𝑖 × 𝑁 + 2) , . . . ,

𝜎̂0 ((𝑖 + 1) × 𝑁) , 𝑛𝑟
, 𝑛
𝑦
) .

(17)

𝑓(𝜎̂0, 𝑛1, 𝑛2) is a function that rearranges an input 𝜎̂0 into a
matrix of size 𝑛

1
× 𝑛
2
.

Dictionary mismatch can occur in the reconstruction
process due to discretization of positions as well as range
velocity; for example, instead of actual position of the
scatterer (𝑟

𝑛
, 𝑦
𝑛
) and velocity V𝑘

𝑥
, the basis has elements

corresponding to (𝑟
𝑛
+Δ𝑟
𝑛
, 𝑦
𝑛
+Δ𝑦
𝑛
) and V𝑘

𝑥
+ΔV𝑘
𝑥
. Considering

Ψ as the mismatched dictionary, (3) can be rewritten as

s = ΦΨ𝜎 + 𝜀, (18)

and reconstruction using the mismatched dictionary Ψ
causes the results to be decorrelated from 𝜎̂0 shown as
follows:

𝜎̂ = Ψ
𝐻
Ψ0𝜎̂0. (19)

Therefore, the effects of dictionary mismatch are related to
the correlation between the mismatched and the original
dictionary. In the next section, we examine the effects of this
correlation on the reconstruction. Furthermore, we present
solutions for the recovery of 𝜎0 that can be written as

𝜎̂0 = argmin
𝜎0 ,Ψ0

󵄩
󵄩
󵄩
󵄩
s −ΦΨ0𝜎0

󵄩
󵄩
󵄩
󵄩

2

2
+ 𝜆

󵄩
󵄩
󵄩
󵄩
𝜎0

󵄩
󵄩
󵄩
󵄩1
, (20)

where Ψ0 is the actual dictionary. We present solutions
for calculation of 𝜎̂0 using GBP that can reduce position
mismatch effects, and propose an iterative scheme to recover
𝜎̂0 in the presence of range velocity mismatch.

3. Analysis of CS Moving Target Imaging in
the Presence of Dictionary Mismatch

3.1. Effects of Position Mismatch. We consider a chirp signal
that is commonly used in imaging radars and show the effects
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of position mismatch on reconstruction. The reconstruction
in the presence of mismatch depends upon the correlation
between the original and the mismatched dictionaries, as
given by (19). Therefore, any form of mismatch will cause
erroneous results due to a correlation loss. This can be seen
by taking the inner product of two chirp signals 𝑠

1
(𝑡) =

exp(−𝑗𝜋𝐾(𝑡 − 𝑡
1
)
2
) and 𝑠

2
(𝑡) = exp(−𝑗𝜋𝐾(𝑡 − 𝑡

1
)
2
) having

frequencies ranging from −𝐵/2 to 𝐵/2. The signals are
displaced with respect to each other by a duration Δ𝑡

𝑑
=

𝑡
1
− 𝑡
2
. They consist of 𝑁 samples with sampling time Δ𝑡

𝑠
.

The correlation |⟨𝑠
𝐻

2
(𝑡), 𝑠
1
(𝑡)⟩| is

󵄨
󵄨
󵄨
󵄨
󵄨
⟨exp (𝑗𝜋𝐾(𝑡 − 𝑡

2
)
2
) , exp (−𝑗𝜋𝐾(𝑡 − 𝑡

1
)
2
)⟩

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑁̃−1

∑

𝑛=0

exp (−𝑗2𝜋𝐾Δ𝑡
𝑑
𝑛Δ𝑡
𝑠
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

(21)

where 𝑡 ∈ {0, Δ𝑡
𝑠
, 2Δ𝑡
𝑠
, . . . , (𝑁̃−1)Δ𝑡

𝑠
}.Δ𝑡
𝑠
should be less than

1/𝐵. Observing that | ∑𝑁̃−1
𝑛=0

exp(−𝑗𝑥𝑛)| = |𝑁̃sinc((1/2)𝑁̃𝑥)|,
we can write (21) as

󵄨
󵄨
󵄨
󵄨
󵄨
⟨exp (−𝑗𝜋𝐾(𝑡 − 𝑡

1
)
2
) , exp (𝑗𝜋𝐾(𝑡 − 𝑡

2
)
2
)⟩

󵄨
󵄨
󵄨
󵄨
󵄨

= 𝑁̃
󵄨
󵄨
󵄨
󵄨
sinc (𝜋𝐵Δ𝑡

𝑑
)
󵄨
󵄨
󵄨
󵄨
,

(22)

where 𝐵 = 𝐾𝑁̃Δ𝑡
𝑠
. As the position mismatch increases, Δ𝑡

𝑑

increases and, with the increase of Δ𝑡
𝑑
, correlation decreases.

Consequently, the amplitude of the reconstructed result will
be reduced by a factor of |sinc(𝜋𝐵Δ𝑡

𝑑
)|. The result of the

correlation would be 0 when

Δ̃𝑡
𝑑
= Δ𝑡
𝑠

(23)

or

Δ̃𝑡
𝑑
=

1

𝐵

. (24)

Consequently, if the two chirp signals are displaced by Δ̃𝑡
𝑑

with respect to each other, CS imaging will fail to reconstruct
the correct position. An arbitrary element will be selected
and cause a failure of the CS reconstructionmodel.Therefore,
the smaller the distance between the dictionary elements, the
smaller the mismatch and the better the reconstruction at the
expense of larger dictionary size and higher number of com-
putations. In effect, by making an oversampled dictionary,
we can improve the reconstruction and this oversampling
should bemore than twice the sampling frequencies to reduce
mismatch errors; that is,

Δ𝑡
max
𝑑

<

Δ̃𝑡
𝑑

2

. (25)

The implication of the above result will be studied in the next
section. Amoving target and the effects of mismatch in range
and azimuth positions as well as range velocity on themoving
target reconstruction are considered.

Table 2: Effect of mismatch on range and azimuth positions.

Mismatch type Effect in range Effect in azimuth
Range Δ𝑟

𝑛
−Δ𝑟
𝑛
(ΔV𝑘
𝑥
/𝑉) sin 𝜃

𝑛

Azimuth Δ𝑦
𝑛
(ΔV𝑘
𝑥
/𝑉) sin 𝜃

𝑛
−Δ𝑦
𝑛

Velocity 𝑦
𝑛
(ΔV𝑘
𝑥
/𝑉) sin 𝜃

𝑛
−𝑟
𝑛
(ΔV𝑘
𝑥
/𝑉) sin 𝜃

𝑛

3.2. Effects of Range Position, Azimuth Position, and Range
Velocity Mismatch on Reconstruction of a Moving Target.
First, we consider the equivalent static position of a moving
point. A moving point at an initial position of 𝑟

𝑛
, 𝑦
𝑛
and

having a velocity of V𝑘
𝑥
can be equivalently seen as a static

point with coordinates 𝑟
𝑚
and 𝑦

𝑚
and rotated with an angle

Θ
𝑘

𝑛
[33]; that is:

𝑟
𝑚

= 𝑟
𝑛
+ 𝑦
𝑛
Θ,

𝑦
𝑚

= −𝑟
𝑛
Θ + 𝑦

𝑛
,

(26)

where

Θ
𝑘

𝑛
= tan−1

V𝑘
𝑥
sin 𝜃
𝑛

𝑉

≈

V𝑘
𝑥
sin 𝜃
𝑛

𝑉

.

(27)

Assuming that our dictionary is created with resolutions of
𝑠
𝑟
, 𝑠
𝑦
, and 1m/s in range position, azimuth position, and

range velocity, respectively, the mismatch effects on amoving
target can be divided into 3 categories as follows.

(i) A subpixel mismatch in range position represented as
Δ𝑟
𝑛
. This mismatch will lead to an equivalent shift of

Δ𝑟
𝑛
in the range position and an equivalent shift of

−Δ𝑟
𝑛
(V𝑘
𝑥
sin 𝜃
𝑛
/𝑉) in the azimuth position.

(ii) A subpixel mismatch in azimuth position represented
as Δ𝑦
𝑛
. This mismatch will lead to an equivalent shift

of Δ𝑦
𝑛
(V
𝑥𝑛
sin 𝜃
𝑛
/𝑉) in the range position and an

equivalent shift of −Δ𝑦
𝑛
in the azimuth position.

(iii) A fraction of m/s mismatch in range velocity rep-
resented as ΔV𝑘

𝑥
. This mismatch will lead to an

equivalent shift of 𝑦
𝑛
(ΔV𝑘
𝑥
/𝑉) sin 𝜃

𝑛
in the range

position and an equivalent shift of −𝑟
𝑛
(ΔV𝑘
𝑥
/𝑉) sin 𝜃

𝑛

in the azimuth position. As an example, if a point
in acquired raw data is at position (𝑟

𝑛
, 𝑦
𝑛
) moving

with a velocity V𝑘
𝑥
+ ΔV𝑘
𝑥
, and the dictionary contains

elements with velocity V𝑘
𝑥
, the reconstructed estimate

will be a point at position (𝑟
𝑛
+𝑦
𝑛
(ΔV𝑘
𝑥
/𝑉) sin 𝜃

𝑛
, 𝑦
𝑛
−

𝑟
𝑛
(ΔV𝑘
𝑥
/𝑉) sin 𝜃

𝑛
) instead of the true position of

(𝑟
𝑛
, 𝑦
𝑛
). As 𝑟

𝑛
is large, the effect on azimuth position

will be more evident even when range velocity mis-
match is small. The mismatch effects due to Δ𝑟

𝑛
, Δ𝑦
𝑛
,

and ΔV𝑘
𝑥𝑛

are summarized in Table 2.

3.3. Effects on Reconstruction for a Single Point in the Presence
of Range Position, Azimuth Position, and Range Velocity
Mismatch. Based on the above discussion, the effects of
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mismatch on reflectivity reconstruction for a single element
𝜎0 = 𝜎

1

1
𝛿(𝑟−𝑟

1
, 𝑦−𝑦
1
), where 𝑟

1
and𝑦
1
are the pixel positions,

can be summarized as follows.

(i) A mismatch of Δ𝑟
1
will cause a shift of Δ𝑟

1
in

range position in the reconstructed result. The
shift in azimuth position −Δ𝑟

1
(ΔV1
𝑥
/𝑉) sin 𝜃

1
can be

neglected as it is small due to the presence of𝑉 in the
denominator. The result will be

𝜎̂0 = 𝜎
1

1
sinc(𝜋Δ𝑟

1

𝑠
𝑟

)𝛿 (𝑟 − 𝑟
1
, 𝑦 − 𝑦

1
) (28)

leading to a loss of amplitude.
(ii) Amismatch ofΔ𝑦

1
will cause a shift ofΔ𝑦

1
in azimuth

position in the reconstructed result. The shift in
azimuth position Δ𝑦

1
(ΔV1
𝑥
/𝑉) sin 𝜃

1
can be neglected

due to the presence of 𝑉 in the denominator. The
result will be

𝜎̂0 = 𝜎
1

1
sinc(𝜋

Δ𝑦
1

𝑠
𝑦

)𝛿 (𝑟 − 𝑟
1
, 𝑦 − 𝑦

1
) (29)

leading to a loss of amplitude.

(iii) A range velocity mismatch ΔV1
𝑥
causes a large shift

in azimuth from the true position, given as Δ𝑦
1

1
=

−𝑟
1
ΔV1
𝑥
sin 𝜃
1
/𝑉. The shift in the range position

𝑦
1
(ΔV1
𝑥
/𝑉) sin 𝜃

1
can be neglected. However, the shift

in azimuth position cannot be neglected due to the
presence of 𝑟

1
in the numerator that is of the order of

10
3 or higher. It can be further divided into 2 parts as

follows.

(1) An interpixel displacement: ⌊Δ𝑦1
1
, 𝑠
𝑦
⌋, where ⌊⋅⌋

is the floor operation.
(2) An intrapixel displacement: Δ𝑦1

1
mod 𝑠

𝑦
, where

mod is the modulo operation.

The reconstructed result will be

𝜎̂
0
= 𝜎
1

1
sinc(𝜋

Δ𝑦
1

𝑛
mod 𝑠

𝑦

𝑠
𝑦

)

× 𝛿 (𝑟 − 𝑟
1
, 𝑦 − 𝑦

1
+ ⌊Δ𝑦

1

1
, 𝑠
𝑦
⌋)

(30)

leading to a loss of amplitude and azimuth position
shift.

(iv) In order to avoid the loss in amplitude as well as
azimuth mispositioning of the reconstructed result,
the dictionary can be created with higher parameter
resolution. The dictionary resolutions in range and
azimuth positions and range velocity are such that any
mismatch does not lead to a misselection of elements.
This can be achieved if the dictionary resolutions
are less than half the pixel sizes. This ensures that
a correct pixel positions is selected. These criteria

can be expressed as follows for range and azimuth
positions:

Δ̃𝑟 <

𝑠
𝑟

2

, (31)

Δ̃𝑦 <

𝑠
𝑦

2

. (32)

In case of velocity, the shift in azimuth position caused
by range velocity mismatch should be less than half
the pixel size; that is,

Δ𝑦
𝑘

𝑛
<

𝑠
𝑦

2

(33)

or

−𝑟
𝑛

ΔV𝑘
𝑥

𝑉

sin (𝜃
𝑛
) <

𝑠
𝑦

2

. (34)

As this shift is large for a larger value of 𝑟
𝑛
, we choose

the farthest slant-range distance 𝑟max to get a conser-
vative estimate as follows:

𝑟maxΔ̃V𝑥 sin (𝜃max)

𝑉

<

𝑠
𝑦

2

, (35)

where the angle corresponding to 𝑟max is 𝜃max. This
leads to

Δ̃V
𝑥
<

𝑠
𝑦
𝑉

𝑟max sin (𝜃max)
. (36)

The limit given by (32) is also applicable for compensating
intrapixel displacements due to velocity mismatch. Please
note that due to the presence of 𝑟max in the denominator, Δ̃V

𝑥

is very small, which means that the dictionary needs to be
created with very closely spaced velocity values.

When there is a moving scene consisting of a number of
points given as

𝜎0 = ∑

𝑘

∑

𝑛

𝜎
𝑘

𝑛
𝛿 (𝑟 − 𝑟

𝑛
, 𝑦 − 𝑦

𝑛
) , (37)

the reconstructed result in the presence of mismatch is as
follows:

𝜎̂0 = ∑

𝑘

∑

𝑛

𝜎
𝑘

𝑛
sinc(𝜋

Δ𝑟
𝑛

𝑠
𝑟

) sinc(𝜋

Δ𝑦
𝑛

𝑠
𝑦

)

× sinc(𝜋

Δ𝑦
𝑘

𝑛
mod 𝑠

𝑦

𝑠
𝑦

)𝛿 (𝑟 − 𝑟
𝑛
, 𝑦 − 𝑦

𝑛
+ ⌊Δ𝑦

𝑘

𝑛
, 𝑠
𝑦
⌋) .

(38)

The three sinc functions represent a loss in estimated ampli-
tude due to the mismatch, whereas the second term in the
delta function represents a pixel-level shift.
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3.4. Using CSGBP to Improve Performance in the Presence
of Mismatch. In order to avoid errors due to dictionary
mismatch, the dictionary needs to be created with upsam-
pled positions and range velocity parameters. This high
upsampling may not be feasible due to limited storage and
computational complexity. We propose to reduce this high
upsampling requirement by using a different prior as well as
an iterative scheme. The chosen prior is GBP given as [6]

𝜎
𝑘

0,𝑖
∼ (1 − 𝑝) 𝛿 (𝜎

𝑘

0,𝑖
) + 𝑝N (𝜇

𝜎
, 𝑠
2

𝜎
) , (39)

where 𝜎
𝑘

0,𝑖
is the 𝑖th element of 𝜎0 moving with 𝑘th velocity.

The main motivation of using this prior is to utilize a
priori information about sparsity and signal strength for
image reconstruction. 𝜎0 can be assumed as 𝑞-sparse that is
represented by the probability of active elements 𝑝 = 𝑞/𝑁

𝑡
in

𝜎0. The prior assumes that the probability of active elements,
that is, an entry of 𝜎0 being nonzero, is given by 𝑝 and these
active elements are represented by a Gaussian distribution
with mean 𝜇

𝜎
and variance 𝑠2

𝜎
. The probability of an inactive

element is given by 1 − 𝑝. The solution to recover 𝜎0 from s0
for the prior can be obtained by rewriting (3) as follows:

s0 = ΦΨ0 diag (z0)𝜎0 + 𝜀, (40)

where z0 = [𝑧
1

0,1
⋅ ⋅ ⋅ 𝑧
1

0,𝑁
⋅ ⋅ ⋅ 𝑧

𝑁V𝑥
0,1

⋅ ⋅ ⋅ 𝑧

𝑁V𝑥
0,1

]
𝑇. The 𝑛th entry of z0

is 1 if the corresponding entry in 𝜎0 is 1. In this case, 𝜎0 can
be recovered from s0 in two steps as follows.

(1) The 1st step is the solution to the following problem:

ẑ0 = argmax
z0

𝑝 (z0 | s0)

= argmax
z0

𝑝 (s0 | z0) 𝑝 (z0) ,
(41)

where

𝑝 (z0) = 𝑝
𝑞
(1 − 𝑝)

𝑁
𝑡
−𝑞 (42)

and𝑝(s0 | z0) is given on the next page. For the sake of
convenience, we define D = ΦΨ0 and the covariance
matrix is given as R = 𝑠

2

𝜎
D diag(z0)D𝐻 + 𝑠

2

𝜀
I. The

solution can be further written as

ẑ0 = argmin
z0

{− log𝑝 (s0 | z0) − 𝑝 (z0)} . (43)

(2) The solution ẑ0 obtained from the 1st step is used to
recover estimate of 𝜎0 by using least squares solution
given as

𝜎̂0 = argmin
𝜎0

󵄩
󵄩
󵄩
󵄩
s0 −ΦΨ0 diag(ẑ0)𝜎0

󵄩
󵄩
󵄩
󵄩

2

2
, (44)

𝑝 (s0 | z0)

=

1

det (R) 𝜋𝑀

× exp {−(s0 − 𝜇
𝜎
Dz0)
𝐻R−1 (s0 − 𝜇

𝜎
Dz0)} .

(45)

Furthermore, this model is suitable for man-made mov-
ing scatterers as they may be represented as consisting of
a coherent mean part and variation of reflectivities can be
represented by an incoherent part represented as variance;
that is, 𝜎0 ∼ N(𝜇

𝜎
, 𝑠
2

𝜎
). In addition, noise 𝜀 can be assumed to

be zero-mean Gaussian with variance 𝑠2
𝜀
; that is, 𝜀 ∼ N(0, 𝑠

2

𝜀
).

This CSGBP model can be solved using the algorithms in [6]
or [7]. In [6], the raw data is correlated with each column of
the matrix D, and the presence or the absence of an element
is decided by hypothesis testing. This testing is based on the
assumption that the signal is distributed according to theGBP
and the noise has Gaussian distribution. In [7], an efficient
method is proposed for finding a combination of active and
inactive elements.

3.5. Analysis of CSGBP and CSLP Performance in the Presence
of Dictionary Mismatch Using Cramer-Rao Bounds. To show
theoretically the advantage gained by using CSGBP recon-
struction model given in (17) over CSLP model in (7), CRB
of the vector 𝜎̂0 estimated from data vector s0 is calculated as
the inverse of Fisher informationmatrix (FIM) J.We consider
Φ to be identity matrix in (3) for the sake of convenience.The
FIM bounds the estimation error in the following form:

𝐸 [(𝜎0 − 𝜎̂0) (𝜎0 − 𝜎̂0)
𝑇
] ≥ J−1. (46)

Φ is assumed to be an identity matrix for the sake of
convenience. J is decomposed into two parts [34];

JD = 𝐸s0 ,𝜎0 [−
𝜕
2
{log𝑝 (s0 | 𝜎0)}

𝜕𝜎0
2

] (47)

and JP represents prior information matrix whose individual
elements are given as

JP = 𝐸s0 ,𝜎0 [−
𝜕
2
{log𝑝 (𝜎0)}

𝜕𝜎0
2

] . (48)

Making use of the explanation given in [35] and smooth
approximation; that is, ‖𝜎0‖1 ≈ ∑

𝑁

𝑖=1
(|𝜎
0,𝑖
|
2
+ 𝜀)

1/2, the FIM
is given as

JLP = (

Ψ0
𝐻
Ψ0

𝑠
2

𝜀

) (49)

for the case where CSLP is used. When CSGBP is used, the
FIM is

JGBP = (

Ψ0
𝐻
Ψ0

𝑠
2

𝜀

+

1 − 𝑝

𝑠
2

𝜎

) . (50)

As (50) contains more information compared to (49), JCSGBP
in (50) will be larger and hence the estimation error will be
lower that shows the improvement in performance. In case
of a dictionary mismatch, using (18) and (19), (47) and (48)
become

J̃D = Ψ
𝐻
Ψ0𝐸s0,𝜎0 [−

𝜕
2
{log𝑝 (s0 | 𝜎0)}

𝜕𝜎0
2

] (51)
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and JP represents prior information matrix whose individual
elements are given as

J̃P = Ψ
𝐻
Ψ0𝐸s0 ,𝜎0 [−

𝜕
2
{log𝑝 (𝜎0)}

𝜕𝜎0
2

] . (52)

Equation (49) becomes

̃JLP = (

(Ψ
𝐻
Ψ0) (Ψ0

𝐻
Ψ0)

𝑠
2

𝜀

) (53)

and (50) is rewritten as

̃JGBP = (

(Ψ
𝐻
Ψ0)
𝐻

(Ψ0
𝐻
Ψ0)

𝑠
2

𝜀

+

(1 − 𝑝) (Ψ
𝐻
Ψ0)

𝑠
2

𝜎

) .

(54)

When no dictionary mismatch is present,Ψ𝐻Ψ0 has a maxi-
mum value along the diagonal elements. In case of mismatch,
the diagonal elements of Ψ𝐻Ψ0 decrease. Subsequently, J
decreases leading to an increase in estimated error. It can
be inferred that, due to the prior information in (54), the
increase of estimated error in the presence of dictionary
mismatch is less when CSGBP is used. This can be seen in
Figure 1, where an identity matrix of size 512 × 512 pixels is
used asΨ0.Ψ is a mismatched basis that is decorrelated with
Ψ0 in varying proportions as follows:

Ψ = 𝜌Ψ0 + √1 − 𝜌
2N (0, 1) , (55)

where 𝜌 is the degree of correlation and themeasure 1−𝜌 can
be seen equivalent to dictionary mismatch proportion. MSE
is calculated using the expression

MSELP/GBP =

1

512

trace (JLP/GBP
−1
) . (56)

It can be seen that using the model given in (39) lowers MSE
that can help in countering effects of decorrelation arising due
to dictionary mismatch.

3.6. Dealing with Range Velocity Mismatch Using Iterative
CSGBP. As outlined in the previous section, CSGBP can
compensate for some mismatch, which can help in reducing
upsampling requirements. However, it is still not possible
to deal with range velocity mismatch using only CSGBP. In
general, CS SAR moving target imaging is very sensitive to
range velocity mismatch. To avoid any error due to range
velocity mismatch, the dictionary should be created with
a very high resolution in range velocity; for example, for
typical SAR configurations, this resolution can be of the
order of 0.01m/s. Such a high upsampling requirement is not
feasible due to limited memory requirements and very high
computations.

In this section, we propose to compensate for velocity
mismatch by creating a dictionary iteratively, with range
velocities varying at each iteration. In order to reduce
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Figure 1: MSE using CSLP and CSGBP.

the computational time, wemake use of the following approx-
imation to (6):

𝑑
𝑘

𝑛
(𝜏
𝑚
) ≈ 𝑟
𝑛
− V𝑘
𝑟,𝑛

(𝜏
𝑚
−

𝑦
𝑛

𝑉

) +

(𝜏
𝑚
− 𝑦
𝑛
/𝑉)
2

2𝑟
𝑛

. (57)

We can make use of this approximation to create 𝑠
𝑘+1

𝑛
(𝑡
𝑙
, 𝜏
𝑚
)

from 𝑠
𝑘

𝑛
(𝑡
𝑙
, 𝜏
𝑚
) as follows:

𝑠
𝑘+1

𝑛
(𝑡
𝑙
, 𝜏
𝑚
) ≈ 𝑠
𝑘

𝑛
(𝑡
𝑙
, 𝜏
𝑚
) exp (𝑗𝑘

𝑐
ΔV𝑘
𝑟,𝑛

(𝜏
𝑚
− 𝑦
𝑛
/𝑉)) ,

(58)

where ΔV𝑘
𝑟,𝑛

= V𝑘
𝑟,𝑛

− V𝑘+1
𝑟,𝑛

. This allows us to create a
dictionary with varying mismatch iteratively using already
computed dictionaries. Using the approximation, we propose
the following scheme to reconstruct SAR image in the
presence of dictionary mismatch.

(1) Create a dictionary with range and azimuth positions
at a subpixel resolution. This resolution is chosen so
as to meet the upsampling requirements given by
(31) and (32). We chose an upsampling factor of 4 in
position, which means that the maximum mismatch
that can occur is 1/8 of the pixel size. This process is
carried out only once.

(2) Carry out CSGBP reconstruction using the dictionary
created in Step 1. Due to the upsampling chosen
in the range and azimuth directions, and, due to
the fact that the range velocity mismatch does not
affect the range position, the result contains correct
range position as well as range velocity. There will be
azimuth position displacements due to range velocity
that will be compensated in the next steps.

(3) For each set of reconstructed 𝑛
𝑘
points belonging to

the same range velocity V𝑘
𝑥
, regenerate new dictionary
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Table 3: Simulation parameters.

Carrier frequency 1.3 GHz Incidence at center 40
∘

Chirp rate 1 GHz/s Sensor velocity 100m/s
Pulse duration 5𝜇s Sensor height 2000m
Pulse repetition
frequency 140Hz Azimuth aperture 7

∘

Azimuth pixel size 0.7m Range pixel size 2.7m

elements at the selected range positions using (58) and
a velocity increment of ⌊Δ𝑦𝑘

𝑛
, 𝑠
𝑦
⌋.

(4) Step 3 is repeated by incrementing the velocity in
steps of ⌊Δ𝑦

𝑘

𝑛
, 𝑠
𝑦
⌋, until the reconstructed image is

judged to be of the best quality for the 𝑛
𝑘
points. As a

quality measure, contrast of the reconstructed vector
is calculated as follows:

𝐶
𝜎̂0

=

⟨𝜎̂
2

0⟩

⟨𝜎̂0⟩
2
, (59)

where ⟨⋅⟩ is the averaging operator.
(5) Steps 3 and 4 are repeated for each velocity in the

dictionary where moving points were detected in
Step 2.

4. Numerical and Imaging Results

This section presents numerical and imaging results. We
give examples with MSE calculated for different amounts of
mismatch in range, azimuth, and range velocity for SAR data,
followed by imaging examples.

4.1. Numerical Results. The simulation parameters for SAR
data are given in Table 3. A scene of size 50m × 50m or 12
× 70 pixels in range and azimuth directions is considered.
Raw data corresponding to multiple points are simulated
and 5% of range data are retained. Positions and amplitudes
of these points are chosen randomly, whereas ground-range
velocities are chosen randomly from a set of 7 velocities:
{0, 3, 4, 5, −3, −4, −5}m/s. Performance in terms of dictionary
mismatch is compared. For this purpose, data are generated
using a dictionary Ψ0 and CS reconstruction is carried out
using a mismatched dictionaryΨ. The mismatch has a value
of 0.01, followed by values from 0.1 to 0.7 with a step-size
of 0.1. For range and azimuth pixels, the mismatch unit is
pixel size, whereas, for range velocity, it is m/s. A series of
simulation is carried out at a signal-to-clutter ratio (SCR) of
20 dB with randomly chosen positions and velocities of the
moving targets. Reconstruction is carried out usingCSLP and
CSGBP and the resulting MSE between the original points
and the reconstructed points are shown in Figure 2. MSE is
calculated as follows:

MSE =

1

𝑁
𝑡

𝑁
𝑡

∑

𝑛=1

󵄨
󵄨
󵄨
󵄨
𝜎
0 (

𝑛) − 𝜎̂
0 (

𝑛)
󵄨
󵄨
󵄨
󵄨

2
. (60)

Four main parameters are used in CSGBP reconstruction: 𝑞,
𝜇
𝜎
, 𝑠
𝜎
, and 𝑠

𝜀
, which are initially estimated by using a-priori

information. The value of 𝑞 is decided according to the ratio
of supposed active scatterers to total number of scatterers
present in the data, whereas the values of 𝜇

𝜎
, 𝑠
𝜎
, and 𝑠

𝜀
are

chosen based on SCR.They are then refined by trial and error
to get the best results. In general, higher than required values
of 𝑞, 𝜇

𝜎
, and 𝑠

𝜎
help in producing weak scatterers but lead to

more side lobes, whereas a higher value of 𝑠
𝜀
suppresses weak

scatterers. From Figure 2, the following observations can be
made.

(i) In general, reasonable reconstruction is obtained
when the effect of basis mismatch is less than 1/3 of
a pixel size.

(ii) MSE is less in case of no range and azimuth pixel mis-
match using CSGBP. Similarly, for a small mismatch
in range and azimuth directions, theMSE level in case
of CSGBP based reconstruction is less. Specifically,
it can be remarked that although for the velocity
mismatch, MSE increases when velocity mismatch
reaches 0.1m/s; however, in case of range and azimuth
pixels mismatch, MSE is very small as long as pixel
mismatch stays less than 0.3 of the pixel size. Thus,
CSGBP can be used for better reconstruction and
reduction of the dictionary size in practical scenarios,
compared to CSLP based reconstruction, where the
MSE is higher even in case of no dictionarymismatch.

(iii) MSE for range velocity is high using both methods.
After the mismatch of 0.1m/s, CSLP seems to give
slightly lower MSE. The reason may be that CSGBP
gives higher number of side lobes. Further simula-
tions for the values of mismatch ranging from 0.01
to 0.1 in a step size of 0.01m/s are shown in Figure 3.
It can be seen that MSE using CSGBP is still smaller
than that usingCSLP.The reason for not reporting any
ill effects of mismatch in velocity in [25] may be that
the amount of mismatch considered is small for the
configuration that was studied.There are two types of
moving targets that are considered in [25], a slow one
and a fast one. The former target has a range velocity
of 2.35m/s, whereas the latter target has a range
velocity of 28.15m/s.The range velocity mismatch for
the slow target is 0.85m/s, whereas, for the fast target,
it is 0.45m/s.The amount ofmismatch is small to have
any effect on the reconstruction for the particular
case. This can be seen from reconstruction results in
Figure 5 of [25] that shows focussing assuming no
motion. The slow object, despite having a mismatch
of 2.35m/s in the range direction, is still focussed at
the same position. Our results show theoretically as
well as experimentally that amismatch in velocity can
have a serious impact on reconstruction.

(iv) The error increases gradually for position mismatch
but increases very rapidly for range velocity mis-
match. The reason is that, in case of range velocity
mismatch, a large shift arises in azimuth direction.
This is due to the reason that 𝑟

𝑛
is of the order of 103m;
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Figure 3:MSE for range velocitymismatch using CSLP and CSGBP.

for example, for a velocity mismatch of 0.05m/s,
𝑟
𝑛

= 2595m, and 𝜃
𝑛

= 40
∘, there is a single-pixel

shift between the original and reconstructed position.
Thus, the reconstruction result will contain azimuth
pixels shifted according to the mismatch, which leads
to a sudden increase in MSE. As there is a total mis-
alignment between actual and estimation positions,
MSE rises and stays at a roughly constant maximum
level. This is further demonstrated in Figure 4, where
a reconstructed scene contains a single pixel shiftwith
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Figure 4: Effects of range velocitymismatch using CSGBP. A single-
pixel shift and some side lobes can be seen.

respect to the actual position.The reason is that there
is a mismatch in range velocity of 0.05m/s. A loss of
amplitude and side lobes can be seen.

(v) The error in azimuth is more than that in range
position in general, especially using CSLP.The reason
is that there are more than one combination of 𝑟

𝑛
, 𝑦
𝑛
,

and 𝜃
𝑛
that lead to closely resembling values of 𝑟

𝑚
and

𝑦
𝑚
in (26); for example, for the parameters given in

Table 3, we can see that 𝑟
𝑛
and 𝑦

𝑛
of 2594.5m and
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Figure 5: Effects of azimuth pixel mismatch using CSLP and CSGBP.

−25.7143m with V
𝑥

= 3m/s lead to 𝑟
𝑚
and 𝑦

𝑚
of

2594m and −75.2693m. The same values of 𝑟
𝑚
and

𝑦
𝑚
are obtained with similar value of 𝑟

𝑛
and 𝑦

𝑛
=

−9.1154m with V
𝑥
= 4m/s as well as 𝑦

𝑛
= 7.2128m

and V
𝑥
= 5m/s. Thus, it is possible that a dictionary

mismatch will lead to selection of dictionary elements
and subsequently, side lobes that are not in the
immediate neighborhood. This is demonstrated in
Figure 5, where there are 4 points at different azimuth
positions having a velocity of 3m/s. The mismatch
is 0.1, 0.3, 0.5, and 0.7 of a pixel size. When CSLP is

used to carry out reconstruction, only a single point
is identified with a velocity of 3m/s. This is shown in
Figure 5(a). Two of the points are detected at shifted
azimuth positions with a velocity of 4m/s, as shown
in Figure 5(b). The fourth point is not identified at
all. In case of reconstruction using CSGBP, all of
the four points are identified correctly as shown in
Figure 5(c), albeit with higher side lobes. This also
demonstrates the advantage offered by CSGBP by
identifying correct positions and velocity even in the
presence of pixel mismatch.
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correctly

A
m

pl
itu

de

Azimuth bins

Ran
ge 

bin
s

3

2

1

70
60

50
40

30
20

10
2

4

6

8

10

12

0

Reconstructed scene using CSGBP

(c) Reconstruction using CSGBP. All positions are identified correctly

Figure 6: Reconstruction in the presence of range and azimuth pixels mismatch using CSLP and CSGBP.

4.2. Imaging Results. In this section, we compare the recon-
struction performance of CSLP and CSGBP through imaging
results and demonstrate the effectiveness of the proposed
iterative CSGBP. Eight points are simulated at positions (2,
55), (3, 15), (4, 9), (4, 25), (6, 40), (7, 50), (8, 60), and (9,
65). The scene is shown in Figure 6(a). The velocities of the
points are 3, 4, −5, 5, 4, −3, −4, and −5m/s, respectively.
Reconstruction is carried out in the presence of a mismatch
of 1/8 of a pixel size in range and azimuth. Results using
CSLP are shown in Figure 6(b), which shows that the point
at (7, 50) is not reconstructed correctly. CSGBP results
shown in Figure 6(c) indicate that all the points are correctly
reconstructed. This demonstrates the superior performance
of CSGBP. Furthermore, results usingCSGBP show side lobes
in the vicinity of actual positions, whereas, in case of CSGBP,
the side lobes appear at positions that are not in the vicinity of
actual positions. A further example is shownwith amismatch
of 0.4m/s in range velocity. The original scene is shown
in Figure 7(a), where there are closely spaced scatterers
roughly in the middle of the scene. They have a velocity of
4.4m/s, whereas the closest velocity in the dictionary is 4m/s.
Reconstruction using both CSLP and CSGBP shows shifted

results due to the mismatch. Furthermore, results obtained
using CSLP were obtained at a velocity of 5m/s. Result
obtained using iterative CSGBP is shown in Figure 7(d),
where the points are located at their correct positions. The
velocity in the dictionary is increased iteratively with a step
size of 0.05m/s, until the highest contrast is achieved. A
plot of contrast with velocity is shown in Figure 8, where
it can be seen that the contrast is the highest when the
velocity in the dictionary matches the actual velocity. This
shows that creating dictionary elements iteratively and using
contrast to measure quality are effective methods for dealing
with CS moving target imaging in the presence of range
velocity mismatch. Another example is shown with a scene
in Figure 9(a). The points are at positions of (2, 5), (5, 45),
(6, 34), (2, 70), (10, 15), and (7, 65). The point at (2, 5) has
a velocity of −4.9m/s, the point at (5, 45) has a velocity of
−4m/s, and the point at (6, 34) has a velocity of −3m/s.
The remaining points have a velocity of 3.3m/s. Thus, there
is a mismatch of 0.1m/s and 0.3m/s. The pixel at position
(2, 5) has a 1/2 pixel mismatch in azimuth and 1/4 pixel
mismatch in azimuth. The pixel at positions (6, 34) has a 1/4
pixel mismatch in azimuth and 1/2 pixel mismatch in range.
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positions. A few side lobes can be seen.

Figure 7: Reconstruction using CSLP, CSGBP, and iterative CSGBP in the presence of range velocity mismatch.

Contrast versus velocity

C
on

tr
as

t

Velocity

1200

1000

800

600

400

200

0

4 4.1 4.2 4.3 4.4 4.5 4.6

Figure 8: Contrast versus velocity. The velocity of the point is 4.4m/s.



14 International Journal of Antennas and Propagation

A
m

pl
itu

de

Azimuth bins
Ran

ge 
bin

s

4

3

2

1

70
60

50 40
30

20
10

2

4

6

8

10

12

0

Original scene

(a) Original scene used for showing effects of
range pixel, azimuth pixel, and range velocity
mismatch

A
m

pl
itu

de

6

4

2

0

Azimuth bins Ran
ge 

bin
s

70
60

50
40

30
20

10
2

4

6

8

10

12

Reconstructed scene
using CSLP

(b) Reconstruction using CSLP. Points at (7, 65)
and (2, 70) are not identified

Reconstructed scene
using CSGBP

3

2

1

0

A
m

pl
itu

de

Azimuth bins Range b
ins

70
60

50
40

30
20

10
2

4

6

8

10

12

(c) Reconstruction using CSGBP. All range
positions are correctly identified

4

3

2

1

0

A
m

pl
itu

de

Azimuth bins Range b
ins

70
60

50
40

30
20

10
2

4

6

8

10

12

Reconstructed scene
using iterative CSGBP

(d) Reconstruction using iterative CSGBP.
Points moving at 3.3m/s are focussed

4

3

2

1

0

A
m

pl
itu

de

Azimuth bins
Range b

ins
70

60
50

40
30

20
10

2

4

6

8

10

12

Reconstructed scene
using iterative CSGBP

(e) Reconstruction using iterative CSGBP. Point
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Figure 9: Reconstruction using CSLP, CSGBP, and iterative CSGBP.

CSLP reconstruction results with the dictionary containing
elements at 1/4 pixel spacing are shown in Figure 9(b). CSLP
is unable to detect two of the scatterers at positions (7, 65)
and (2, 70); other scatterers having velocity mismatch are
shifted in azimuth. CSGBP reconstruction results are shown
in Figure 9(c). All the range positions are correctly identified,
but the result is shifted in azimuth. Result using iterative
CSGBPwith velocity varying in a step size of 0.05m/s for each
velocity in the dictionary is shown in Figures 9(d)–9(f). The
result obtained by maximizing the contrast for the point at
(6, 34) is shown in Figure 9(d), where the points moving at
3.3m/s are focussed at their true position. Some side lobes
can be seen. Similarly, the point moving at −4.9m/s is shown
correctly focussed in Figure 9(e). Final result obtained using
the calculated velocities is shown in Figure 9(f), where all the
points are focussed at their true positions. Some side lobes
can be observed.

5. Conclusion

In this paper, we studied compressed sensing (CS) synthetic
aperture radar (SAR) moving target imaging in the presence
of dictionary mismatch. We analyzed the sensitivity of the
imaging process to range pixel, azimuth pixel, and range
velocity mismatches. The mismatch analysis shows that the
reconstruction error increases with mismatch and especially
increases very rapidly in the presence of range velocity
mismatch. Unlike existing references, we show that using

a Gaussian-Bernoulli prior compared to the traditionally
used Laplacian prior offers advantage in CS SAR imaging for
dealing with small mismatch. This advantage is apparent in
dealing with positions mismatch. We calculated Cramer-Rao
bounds that demonstrate theoretically the lowering of mean
square error between actual and reconstructed result by using
the GBP. We show that creating an upsampled dictionary
and using the GBP for reconstruction can deal with position
mismatch. We also presented an iterative scheme to deal
with the range velocity mismatch where dictionary elements
are created efficiently. CS reconstruction is carried out at
each iteration until the image contrast is maximized for
each velocity. Numerical and imaging examples confirm the
analysis and the effectiveness of the proposed upsampling and
iterative scheme.

Notations and Symbols

𝑡: Range time
𝑓
𝑐
: Central frequency

𝑟: Slant-range positions
𝑦: Azimuth positions
𝑘
𝑐
: 4𝜋𝑓

𝑐
/𝑐

𝐾: Chirp rate
𝑉: Sensor velocity
ℎ: Antenna height
𝑇
𝑝
: Pulse length

𝑥: Ground-range positions
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𝑐: Speed of light
𝜏: Azimuth time
𝜃
𝑛
: Incidence angle at range 𝑟

𝑛
, equal to

cos−1(ℎ/𝑟
𝑛
)

V𝑘
𝑥
: 𝑘th ground range velocity

V𝑘
𝑟,𝑛
: Translational velocity, equal to V𝑘

𝑟,𝑛
=

V𝑘
𝑥
sin 𝜃
𝑛

𝑠
𝑟
: Pixel size in range

𝑠
𝑦
: Pixel size in azimuth

𝑛
𝑟
: Number of range pixels in the scene

𝑛
𝑦
: Number of azimuth pixels in the scene

𝑁
𝑟
: Number of range pixels in raw data

𝑁
𝑦
: Number of azimuth pixels in raw data

𝑁V𝑥: Number of range velocities
𝑁
𝑡
: 𝑁 × 𝑁V𝑥

𝑁: 𝑛
𝑟
× 𝑛
𝑦

𝑁
𝑠
: 𝑁

𝑟
× 𝑁
𝑦

s0: Raw data from all the points in the scene
arranged in 1D form

s𝑘
𝑛
: Raw data for 𝑛th point moving with 𝑘th

velocity, arranged in 1D form
𝑠
𝑘

𝑛
(𝑡
𝑚
, 𝜏
𝑛
): Raw data element for range time 𝑡

𝑚
and

azimuth time 𝜏
𝑛

𝑑
𝑘

𝑛
(𝜏
𝑛
): Radar-target distance for 𝑛th point moving

with 𝑘th velocity
Ψ0: Original dictionary
Ψ: Mismatched dictionary
𝜎0: Original reflectivity vector
𝜎: Mismatched reflectivity vector
𝜎̂0: Reconstructed reflectivity vector
𝜎̂: Reconstructed reflectivity vector in the

presence of mismatch
Σ̂0: Reconstructed reflectivity in 2D
Φ: Sampling matrix
𝑀: Number of columns ofΦ
𝜀: Noise vector
|⟨ , ⟩|: Inner product
⟨⋅⟩: Averaging operation
Θ
𝑘

𝑛
: Rotation angle with which a moving scat-

terer can be seen equivalent to a static
scatterer

Δ𝑟
𝑛
: Subpixel mismatch in range position

Δ𝑦
𝑛
: Subpixel mismatch in azimuth position

ΔV𝑘
𝑥
: Fraction of m/s mismatch in range velocity

Δ𝑦
𝑘

𝑛
: Shift in range position due to range velocity

mismatch
𝜎
𝑘

0,𝑛
: Element of reflectivity vector at 𝑛th posi-

tion and moving with 𝑘th velocity
𝜎̂
𝑘

0,𝑛
: Reconstructed element of reflectivity vec-

tor at 𝑛th position and moving with 𝑘th
vecloity

Δ̃𝑟: Dictionary resolution for range
Δ̃𝑦: Dictionary resolution for azimuth
Δ̃V
𝑥
: Dictionary resolution for range velocity

𝑟
𝑚
: Range position for equivalent static point

𝑦
𝑚
: Azimuth position for equivalent static

point

𝑝: Probability of active coefficients in 𝜎̂0
𝑞: Sparsity of 𝜎̂0
𝜌: Correlation
𝑠
2

𝜀
: Variance for noise

𝑠
2

𝜎
: Variance of reflectivity vector

I: Identity matrix
𝐶
𝜎̂0
: Contrast of 𝜎̂0

FIM: Fisher information matrix
CSLP: CS reconstruction with Laplacian prior
CSGBP: CS reconstruction with Gaussian-

Bernoulli prior
JLP: FIM for CSLP without mismatch
JGBP: FIM for CSGBP without mismatch
̃JLP: FIM for CSLP with mismatch
̃JGBP: FIM for CSGBP with mismatch.
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