206 research outputs found

    Wavelet Based Dictionaries for Dimensionality Reduction of ECG Signals

    Get PDF
    Dimensionality reduction of ECG signals is considered within the framework of sparse representation. The approach constructs the signal model by selecting elementary components from a redundant dictionary via a greedy strategy. The proposed wavelet dictionaries are built from the multiresolution scheme, but translating the prototypes within a shorter step than that corresponding to the wavelet basis. The reduced representation of the signal is shown to be suitable for compression at low level distortion. In that regard, compression results are superior to previously reported benchmarks on the MIT-BIH Arrhythmia data set

    Effective high compression of ECG signals at low level distortion

    Get PDF
    An effective method for compression of ECG signals, which falls within the transform lossy compression category, is proposed. The transformation is realized by a fast wavelet transform. The effectiveness of the approach, in relation to the simplicity and speed of its implementation, is a consequence of the efficient storage of the outputs of the algorithm which is realized in compressed Hierarchical Data Format. The compression performance is tested on the MIT-BIH Arrhythmia database producing compression results which largely improve upon recently reported benchmarks on the same database. For a distortion corresponding to a percentage root-mean-square difference (PRD) of 0.53, in mean value, the achieved average compression ratio is 23.17 with quality score of 43.93. For a mean value of PRD up to 1.71 the compression ratio increases up to 62.5. The compression of a 30 min record is realized in an average time of 0.14 s. The insignificant delay for the compression process, together with the high compression ratio achieved at low level distortion and the negligible time for the signal recovery, uphold the suitability of the technique for supporting distant clinical health care

    Deep learning approaches for human activity recognition using wearable technology

    Get PDF
    The need for long-term monitoring of individuals in their natural environment has initiated the development of a various number of wearable healthcare sensors for a wide range of applications: medical monitoring in clinical or home environments, physical activity assessment of athletes and recreators, baby monitoring in maternity hospitals and homes etc. Neural networks (NN) are data-driven type of modelling. Neural networks learn from experience, without knowledge about the model of phenomenon, but knowing the desired 'output' data for the training 'input' data. The most promising concept of machine learning that involves NN is the deep learning (DL) approach. The focus of this review is on approaches of DL for physiological activity recognition or human movement analysis purposes, using wearable technologies. This review shows that deep learning techniques are useful tools for health condition prediction or overall monitoring of data, streamed by wearable systems. Despite the considerable progress and wide field of applications, there are still some limitations and room for improvement of DL approaches for wearable healthcare systems, which may lead to more robust and reliable technology for personalized healthcare

    Sensor Signal and Information Processing II [Editorial]

    Get PDF
    This Special Issue compiles a set of innovative developments on the use of sensor signals and information processing. In particular, these contributions report original studies on a wide variety of sensor signals including wireless communication, machinery, ultrasound, imaging, and internet data, and information processing methodologies such as deep learning, machine learning, compressive sensing, and variational Bayesian. All these devices have one point in common: These algorithms have incorporated some form of computational intelligence as part of their core framework in problem solving. They have the capacity to generalize and discover knowledge for themselves, learning to learn new information whenever unseen data are captured

    Bidirectional Recurrent Nets for ECG Signal Compression

    Get PDF
    Electrocardiogram (ECG) is a commonly used tool in biological diagnosis of heart diseases. ECG allows the representation of electrical signals which cause heart muscles to contract and relax. Recently, accurate deep learning methods have been developed to overcome manual diagnosis in terms of time and effort. However, most of current automatic medical diagnosis use long electrocardiogram (ECG) signals to inspect different types of heart arrhythmia. Therefore, ECG signal files tend to require large storage to store and may cause significant overhead when exchanged over a computer network. This raises the need to come up with effective compression methods for ECG signals. In this work, the authors investigate using BERT (Bidirectional Encoder Representations from Transformers) model, which is a bidirectional neural network that was originally designed for natural language. The authors evaluate the model with respect to its compression ratio and information preservation, and measure information preservation in terms of the of the accuracy of a convolutional neural network in classifying the decompressed signal. The results show that the method can achieve up to 83% saving in storage. Also, the classification accuracy of the decompressed signals is around 92.41%. Furthermore, the method enables the user to balance the compression ratio and the required accuracy of the CNN classifiers
    corecore