6,419 research outputs found

    A Method for Compressing Parameters in Bayesian Models with Application to Logistic Sequence Prediction Models

    Full text link
    Bayesian classification and regression with high order interactions is largely infeasible because Markov chain Monte Carlo (MCMC) would need to be applied with a great many parameters, whose number increases rapidly with the order. In this paper we show how to make it feasible by effectively reducing the number of parameters, exploiting the fact that many interactions have the same values for all training cases. Our method uses a single ``compressed'' parameter to represent the sum of all parameters associated with a set of patterns that have the same value for all training cases. Using symmetric stable distributions as the priors of the original parameters, we can easily find the priors of these compressed parameters. We therefore need to deal only with a much smaller number of compressed parameters when training the model with MCMC. The number of compressed parameters may have converged before considering the highest possible order. After training the model, we can split these compressed parameters into the original ones as needed to make predictions for test cases. We show in detail how to compress parameters for logistic sequence prediction models. Experiments on both simulated and real data demonstrate that a huge number of parameters can indeed be reduced by our compression method.Comment: 29 page

    Active Classification for POMDPs: a Kalman-like State Estimator

    Full text link
    The problem of state tracking with active observation control is considered for a system modeled by a discrete-time, finite-state Markov chain observed through conditionally Gaussian measurement vectors. The measurement model statistics are shaped by the underlying state and an exogenous control input, which influence the observations' quality. Exploiting an innovations approach, an approximate minimum mean-squared error (MMSE) filter is derived to estimate the Markov chain system state. To optimize the control strategy, the associated mean-squared error is used as an optimization criterion in a partially observable Markov decision process formulation. A stochastic dynamic programming algorithm is proposed to solve for the optimal solution. To enhance the quality of system state estimates, approximate MMSE smoothing estimators are also derived. Finally, the performance of the proposed framework is illustrated on the problem of physical activity detection in wireless body sensing networks. The power of the proposed framework lies within its ability to accommodate a broad spectrum of active classification applications including sensor management for object classification and tracking, estimation of sparse signals and radar scheduling.Comment: 38 pages, 6 figure

    Information Theoretic Limits for Standard and One-Bit Compressed Sensing with Graph-Structured Sparsity

    Full text link
    In this paper, we analyze the information theoretic lower bound on the necessary number of samples needed for recovering a sparse signal under different compressed sensing settings. We focus on the weighted graph model, a model-based framework proposed by Hegde et al. (2015), for standard compressed sensing as well as for one-bit compressed sensing. We study both the noisy and noiseless regimes. Our analysis is general in the sense that it applies to any algorithm used to recover the signal. We carefully construct restricted ensembles for different settings and then apply Fano's inequality to establish the lower bound on the necessary number of samples. Furthermore, we show that our bound is tight for one-bit compressed sensing, while for standard compressed sensing, our bound is tight up to a logarithmic factor of the number of non-zero entries in the signal

    Sparsity-Promoting Bayesian Dynamic Linear Models

    Get PDF
    Sparsity-promoting priors have become increasingly popular over recent years due to an increased number of regression and classification applications involving a large number of predictors. In time series applications where observations are collected over time, it is often unrealistic to assume that the underlying sparsity pattern is fixed. We propose here an original class of flexible Bayesian linear models for dynamic sparsity modelling. The proposed class of models expands upon the existing Bayesian literature on sparse regression using generalized multivariate hyperbolic distributions. The properties of the models are explored through both analytic results and simulation studies. We demonstrate the model on a financial application where it is shown that it accurately represents the patterns seen in the analysis of stock and derivative data, and is able to detect major events by filtering an artificial portfolio of assets

    Recovery from Linear Measurements with Complexity-Matching Universal Signal Estimation

    Full text link
    We study the compressed sensing (CS) signal estimation problem where an input signal is measured via a linear matrix multiplication under additive noise. While this setup usually assumes sparsity or compressibility in the input signal during recovery, the signal structure that can be leveraged is often not known a priori. In this paper, we consider universal CS recovery, where the statistics of a stationary ergodic signal source are estimated simultaneously with the signal itself. Inspired by Kolmogorov complexity and minimum description length, we focus on a maximum a posteriori (MAP) estimation framework that leverages universal priors to match the complexity of the source. Our framework can also be applied to general linear inverse problems where more measurements than in CS might be needed. We provide theoretical results that support the algorithmic feasibility of universal MAP estimation using a Markov chain Monte Carlo implementation, which is computationally challenging. We incorporate some techniques to accelerate the algorithm while providing comparable and in many cases better reconstruction quality than existing algorithms. Experimental results show the promise of universality in CS, particularly for low-complexity sources that do not exhibit standard sparsity or compressibility.Comment: 29 pages, 8 figure
    • …
    corecore