180 research outputs found

    TASE: Task-Aware Speech Enhancement for Wake-Up Word Detection in Voice Assistants

    Get PDF
    Wake-up word spotting in noisy environments is a critical task for an excellent user experience with voice assistants. Unwanted activation of the device is often due to the presence of noises coming from background conversations, TVs, or other domestic appliances. In this work, we propose the use of a speech enhancement convolutional autoencoder, coupled with on-device keyword spotting, aimed at improving the trigger word detection in noisy environments. The end-to-end system learns by optimizing a linear combination of losses: a reconstruction-based loss, both at the log-mel spectrogram and at the waveform level, as well as a specific task loss that accounts for the cross-entropy error reported along the keyword spotting detection. We experiment with several neural network classifiers and report that deeply coupling the speech enhancement together with a wake-up word detector, e.g., by jointly training them, significantly improves the performance in the noisiest conditions. Additionally, we introduce a new publicly available speech database recorded for the Telefónica's voice assistant, Aura. The OK Aura Wake-up Word Dataset incorporates rich metadata, such as speaker demographics or room conditions, and comprises hard negative examples that were studiously selected to present different levels of phonetic similarity with respect to the trigger words 'OK Aura'. Keywords: speech enhancement; wake-up word; keyword spotting; deep learning; convolutional neural networ

    Zero-shot keyword spotting for visual speech recognition in-the-wild

    Full text link
    Visual keyword spotting (KWS) is the problem of estimating whether a text query occurs in a given recording using only video information. This paper focuses on visual KWS for words unseen during training, a real-world, practical setting which so far has received no attention by the community. To this end, we devise an end-to-end architecture comprising (a) a state-of-the-art visual feature extractor based on spatiotemporal Residual Networks, (b) a grapheme-to-phoneme model based on sequence-to-sequence neural networks, and (c) a stack of recurrent neural networks which learn how to correlate visual features with the keyword representation. Different to prior works on KWS, which try to learn word representations merely from sequences of graphemes (i.e. letters), we propose the use of a grapheme-to-phoneme encoder-decoder model which learns how to map words to their pronunciation. We demonstrate that our system obtains very promising visual-only KWS results on the challenging LRS2 database, for keywords unseen during training. We also show that our system outperforms a baseline which addresses KWS via automatic speech recognition (ASR), while it drastically improves over other recently proposed ASR-free KWS methods.Comment: Accepted at ECCV-201

    LiCo-Net: Linearized Convolution Network for Hardware-efficient Keyword Spotting

    Full text link
    This paper proposes a hardware-efficient architecture, Linearized Convolution Network (LiCo-Net) for keyword spotting. It is optimized specifically for low-power processor units like microcontrollers. ML operators exhibit heterogeneous efficiency profiles on power-efficient hardware. Given the exact theoretical computation cost, int8 operators are more computation-effective than float operators, and linear layers are often more efficient than other layers. The proposed LiCo-Net is a dual-phase system that uses the efficient int8 linear operators at the inference phase and applies streaming convolutions at the training phase to maintain a high model capacity. The experimental results show that LiCo-Net outperforms single-value decomposition filter (SVDF) on hardware efficiency with on-par detection performance. Compared to SVDF, LiCo-Net reduces cycles by 40% on HiFi4 DSP

    Seeing wake words: Audio-visual Keyword Spotting

    Full text link
    The goal of this work is to automatically determine whether and when a word of interest is spoken by a talking face, with or without the audio. We propose a zero-shot method suitable for in the wild videos. Our key contributions are: (1) a novel convolutional architecture, KWS-Net, that uses a similarity map intermediate representation to separate the task into (i) sequence matching, and (ii) pattern detection, to decide whether the word is there and when; (2) we demonstrate that if audio is available, visual keyword spotting improves the performance both for a clean and noisy audio signal. Finally, (3) we show that our method generalises to other languages, specifically French and German, and achieves a comparable performance to English with less language specific data, by fine-tuning the network pre-trained on English. The method exceeds the performance of the previous state-of-the-art visual keyword spotting architecture when trained and tested on the same benchmark, and also that of a state-of-the-art lip reading method
    corecore