6,607 research outputs found

    Reconstructing propagation networks with natural diversity and identifying hidden sources

    Get PDF
    Our ability to uncover complex network structure and dynamics from data is fundamental to understanding and controlling collective dynamics in complex systems. Despite recent progress in this area, reconstructing networks with stochastic dynamical processes from limited time series remains to be an outstanding problem. Here we develop a framework based on compressed sensing to reconstruct complex networks on which stochastic spreading dynamics take place. We apply the methodology to a large number of model and real networks, finding that a full reconstruction of inhomogeneous interactions can be achieved from small amounts of polarized (binary) data, a virtue of compressed sensing. Further, we demonstrate that a hidden source that triggers the spreading process but is externally inaccessible can be ascertained and located with high confidence in the absence of direct routes of propagation from it. Our approach thus establishes a paradigm for tracing and controlling epidemic invasion and information diffusion in complex networked systems.Comment: 20 pages and 5 figures. For Supplementary information, please see http://www.nature.com/ncomms/2014/140711/ncomms5323/full/ncomms5323.html#

    Packetized Predictive Control for Rate-Limited Networks via Sparse Representation

    Get PDF
    We study a networked control architecture for linear time-invariant plants in which an unreliable data-rate limited network is placed between the controller and the plant input. The distinguishing aspect of the situation at hand is that an unreliable data-rate limited network is placed between controller and the plant input. To achieve robustness with respect to dropouts, the controller transmits data packets containing plant input predictions, which minimize a finite horizon cost function. In our formulation, we design sparse packets for rate-limited networks, by adopting an an ell-0 optimization, which can be effectively solved by an orthogonal matching pursuit method. Our formulation ensures asymptotic stability of the control loop in the presence of bounded packet dropouts. Simulation results indicate that the proposed controller provides sparse control packets, thereby giving bit-rate reductions for the case of memoryless scalar coding schemes when compared to the use of, more common, quadratic cost functions, as in linear quadratic (LQ) control.Comment: 9 pages, 7 figures. arXiv admin note: text overlap with arXiv:1307.824

    Sparsely-Packetized Predictive Control by Orthogonal Matching Pursuit

    Get PDF
    We study packetized predictive control, known to be robust against packet dropouts in networked systems. To obtain sparse packets for rate-limited networks, we design control packets via an L0 optimization, which can be effectively solved by orthogonal matching pursuit. Our formulation ensures asymptotic stability of the control loop in the presence of bounded packet dropouts.Comment: 3-page extended abstract for MTNS 2012 with 3 figure

    Distributed Compressed Sensing for Sensor Networks with Packet Erasures

    Full text link
    We study two approaches to distributed compressed sensing for in-network data compression and signal reconstruction at a sink in a wireless sensor network where sensors are placed on a straight line. Communication to the sink is considered to be bandwidth-constrained due to the large number of devices. By using distributed compressed sensing for compression of the data in the network, the communication cost (bandwith usage) to the sink can be decreased at the expense of delay induced by the local communication necessary for compression. We investigate the relation between cost and delay given a certain reconstruction performance requirement when using basis pursuit denoising for reconstruction. Moreover, we analyze and compare the performance degradation due to erased packets sent to the sink of the two approaches.Comment: Paper accepted to GLOBECOM 201

    Sparse Packetized Predictive Control for Networked Control over Erasure Channels

    Get PDF
    We study feedback control over erasure channels with packet-dropouts. To achieve robustness with respect to packet-dropouts, the controller transmits data packets containing plant input predictions, which minimize a finite horizon cost function. To reduce the data size of packets, we propose to adopt sparsity-promoting optimizations, namely, ell-1-ell-2 and ell-2-constrained ell-0 optimizations, for which efficient algorithms exist. We derive sufficient conditions on design parameters, which guarantee (practical) stability of the resulting feedback control systems when the number of consecutive packet-dropouts is bounded.Comment: IEEE Transactions on Automatic Control, Volume 59 (2014), Issue 7 (July) (to appear

    FastDeepIoT: Towards Understanding and Optimizing Neural Network Execution Time on Mobile and Embedded Devices

    Full text link
    Deep neural networks show great potential as solutions to many sensing application problems, but their excessive resource demand slows down execution time, pausing a serious impediment to deployment on low-end devices. To address this challenge, recent literature focused on compressing neural network size to improve performance. We show that changing neural network size does not proportionally affect performance attributes of interest, such as execution time. Rather, extreme run-time nonlinearities exist over the network configuration space. Hence, we propose a novel framework, called FastDeepIoT, that uncovers the non-linear relation between neural network structure and execution time, then exploits that understanding to find network configurations that significantly improve the trade-off between execution time and accuracy on mobile and embedded devices. FastDeepIoT makes two key contributions. First, FastDeepIoT automatically learns an accurate and highly interpretable execution time model for deep neural networks on the target device. This is done without prior knowledge of either the hardware specifications or the detailed implementation of the used deep learning library. Second, FastDeepIoT informs a compression algorithm how to minimize execution time on the profiled device without impacting accuracy. We evaluate FastDeepIoT using three different sensing-related tasks on two mobile devices: Nexus 5 and Galaxy Nexus. FastDeepIoT further reduces the neural network execution time by 48%48\% to 78%78\% and energy consumption by 37%37\% to 69%69\% compared with the state-of-the-art compression algorithms.Comment: Accepted by SenSys '1
    • …
    corecore