889 research outputs found

    Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities

    Full text link
    Recently there has been a flurry of research on the use of reconfigurable intelligent surfaces (RIS) in wireless networks to create smart radio environments. In a smart radio environment, surfaces are capable of manipulating the propagation of incident electromagnetic waves in a programmable manner to actively alter the channel realization, which turns the wireless channel into a controllable system block that can be optimized to improve overall system performance. In this article, we provide a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless communications. We describe the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays. We discuss the channel models suitable for both implementations and examine the feasibility of obtaining accurate channel estimates. Furthermore, we discuss the aspects that differentiate RIS optimization from precoding for traditional MIMO arrays highlighting both the arising challenges and the potential opportunities associated with this emerging technology. Finally, we present numerical results to illustrate the power of an RIS in shaping the key properties of a MIMO channel.Comment: to appear in the IEEE Transactions on Cognitive Communications and Networking (TCCN

    Compressed CPD-Based Channel Estimation and Joint Beamforming for RIS-Assisted Millimeter Wave Communications

    Full text link
    We consider the problem of channel estimation and joint active and passive beamforming for reconfigurable intelligent surface (RIS) assisted millimeter wave (mmWave) multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. We show that, with a well-designed frame-based training protocol, the received pilot signal can be organized into a low-rank third-order tensor that admits a canonical polyadic decomposition (CPD). Based on this observation, we propose two CPD-based methods for estimating the cascade channels associated with different subcarriers. The proposed methods exploit the intrinsic low-rankness of the CPD formulation, which is a result of the sparse scattering characteristics of mmWave channels, and thus have the potential to achieve a significant training overhead reduction. Specifically, our analysis shows that the proposed methods have a sample complexity that scales quadratically with the sparsity of the cascade channel. Also, by utilizing the singular value decomposition-like structure of the effective channel, this paper develops a joint active and passive beamforming method based on the estimated cascade channels. Simulation results show that the proposed CPD-based channel estimation methods attain mean square errors that are close to the Cramer-Rao bound (CRB) and present a clear advantage over the compressed sensing-based method. In addition, the proposed joint beamforming method can effectively utilize the estimated channel parameters to achieve superior beamforming performance.Comment: arXiv admin note: text overlap with arXiv:2203.1616

    Hybrid Evolutionary-based Sparse Channel Estimation for IRS-assisted mmWave MIMO Systems

    Get PDF
    The intelligent reflecting surface (IRS)-assisted millimeter wave (mmWave) communication system has emerged as a promising technology for coverage extension and capacity enhancement. Prior works on IRS have mostly assumed perfect channel state information (CSI), which facilitates in deriving the upper-bound performance but is difficult to realize in practice due to passive elements of IRS without signal processing capabilities. In this paper, we propose a compressive channel estimation techniques for IRS-assisted mmWave multi-input and multi-output (MIMO) system. To reduce the training overhead, the inherent sparsity of mmWave channels is exploited. By utilizing the properties of Kronecker products, IRS-assisted mmWave channel is converted into a sparse signal recovery problem, which involves two competing cost function terms (measurement error and sparsity term). Existing sparse recovery algorithms solve the combined contradictory objectives function using a regularization parameter, which leads to a suboptimal solution. To address this concern, a hybrid multiobjective evolutionary paradigm is developed to solve the sparse recovery problem, which can overcome the difficulty in the choice of regularization parameter value. Simulation results show that under a wide range of simulation settings, the proposed method achieves competitive error performance compared to existing channel estimation methods
    • …
    corecore