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Abstract

The intelligent reflecting surface (IRS)-assisted millimeter wave (mmWave) communication system

has emerged as a promising technology for coverage extension and capacity enhancement. Prior works

on IRS have mostly assumed perfect channel state information (CSI), which facilitates in deriving the

upper-bound performance but is difficult to realize in practice due to passive elements of IRS without

signal processing capabilities. In this paper, we propose a compressive channel estimation techniques for

IRS-assisted mmWave multi-input and multi-output (MIMO) system. To reduce the training overhead,

the inherent sparsity of mmWave channels is exploited. By utilizing the properties of Kronecker products,

IRS-assisted mmWave channel is converted into a sparse signal recovery problem, which involves

two competing cost function terms (measurement error and sparsity term). Existing sparse recovery

algorithms solve the combined contradictory objectives function using a regularization parameter, which

leads to a suboptimal solution. To address this concern, a hybrid multiobjective evolutionary paradigm

is developed to solve the sparse recovery problem, which can overcome the difficulty in the choice of

regularization parameter value. Simulation results show that under a wide range of simulation settings,

the proposed method achieves competitive error performance compared to existing channel estimation

methods.

Index Terms

Intelligent reflecting surface (IRS), millimeter wave communications, channel estimation, com-

pressed sensing, hybrid evolutionary algorithm.
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I. INTRODUCTION

Intelligent reflecting surface (IRS) is a key candidate technology to achieve high spectrum

efficiency and the wireless communication coverage, due to it enables the reconfiguration of

wireless propagation environment by controlling the signal reflections via the use of massive

low-cost passive elements, [1]–[4]. By utilizing the preprogrammed controller, the IRS can

change the attenuation and scattering of the incident electromagnetic wave so that the desired

wireless channels is reconfigured to reach the intended receiver, which is called as programmable

and controllable wireless environment. Different from the conventional relaying and backscatter

communications that require power amplifiers to retransmit the signal received, IRS does not

process any incident signals but only reflects the incident signals without amplifying or decod-

ing, thus incurring no additional hardware cost and power consumption [5], [6]. Since IRS is

not equipped with expensive signal processing equipments such as digital-to-analog converter

and modulator/demodulator, IRS is simple and low-cost that can be easily deployed on urban

commercial buildings, shopping mall or indoor spaces [6], [7]. These significant advantages

make IRS passive beamforming as a green energy-efficient technique for 6G cellular Internet of

Things (IoT), and hence it has been investigated in different wireless communication such as

multi-cell cellular networks, secure MIMO transmission, simultaneous wireless information and

power transfer (SWIPT) etc.

However, accurate channel estimation is challenging in IRS-assisted wireless communication.

As opposed to conventional backscatter and relay-assisted wireless communication that channel

state information (CSI) can be obtained using transmission/processing pilot symbols, the passive

reflection elements of IRS no signal processing capability, and hence it is practically difficult

to estimate channels. On the other hand, some of the existing works assume the availability of

perfect CSI to design the precoding matrix at the base station (BS) and phase shifts matrix at the

IRS. Nevertheless, this assumption is difficult to realize in practice. To address these problem,

various channel estimation strategies and algorithms were developed for IRS-assisted mmWave

communications. In [8], [9], the least squares (LS)-based channel estimation schemes were

proposed for a single-user IRS-assisted MISO system. The idea was extended to the orthogonal

frequency division multiplexing (OFDM) system [10] that an IRS with discrete phase shifts

was used to improve the achievable spectrum efficiency. The work was also extended in [11],

[12] that exploit a pilot-based three phase framework for the IRS-assisted multiuser systems. It
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was show that the number of pilot symbols can be significantly reduced in channel estimation

processing and effectively used to the more general channel model without assuming any channel

property. Besides, a sparse channel estimation scheme with matrix factorization was developed

that exploiting the low-rank structure between the BS-IRS and IRS-user channels [13]. However,

in IRS-assisted mmWave communication systems, how to reduce the pilot overhead in accurate

channel estimation still remains a challenge and an open research issue, because the number

of channel parameters to be estimated is large as the passive elements of IRS increase, while

pilot frequency sequence adopted by channel estimation is limited to make sure an achievable

spectrum efficiency.

An alternative approach to mmWave channel estimation is to adopt the compressed sensing

(CS), which can be leveraged to effectively estimate mmWave massive MIMO channels [14]–

[16]. More recently, CS techniques combine with deep denoising neural network has been advo-

cated for IRS-assisted mmWave channel estimation that substantiality reduce the pilot overhead

[17]. These CS-based approaches exploit the the limited scattering characteristics of mmWave

propagation to form a sparse channel recovery problem [18], [19]. Therefore, by exploiting

the sparsity of mmWave channels, the corresponding channel estimation would significantly

reduce the required pilot overhead. It is particularly beneficial to mmWave MIMO systems,

where the number of pilot symbols increases linearly with the number of reflecting elements and

transmit antennas. With that approach, the corresponding CS-based channel estimation algorithms

including matching pursuit, orthogonal matching pursuit (OMP) [20] and the least absolute

shrinkage and selection operator (LASSO) algorithm [21], [22] or its variations were exploited

for the pilot-assisted channel estimation rather than using traditional least squares (LS) methods.

In particular, a burst LASSO algorithm was developed for robust channel estimation in massive

MIMO system, which can greatly improve the channel estimation performance by exploiting the

burst-sparse structure of the channel [23]. They also developed a P-CSPI aided burst LASSO

algorithm to improve performance gain and effectively alleviate the stringent requirement on

the sparsity level for robust CSIT recovery. In [24], a compressed channel estimation for IRS-

assisted mmWave system was studied, in which the cascade channel can be cast as a CS-based

sparse recovery problem by exploiting the inherent sparse structure of mmWave. However, all

of the above CS-based algorithms mentioned are single objective optimization problem that

is solved with with the fixed solution path. Moreover, the performance of [21]–[24] is highly

dependent on the regularization parameter. Over the recent few years, various strategies and
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algorithms for choosing optimal parameter were studied [25]–[27]. To achieve the optimized

regularization parameter, the noise standard deviation should be provided in advance. The same

strategies also have been studied in [28] that can obtain the more accurate results by sacrificing

computational overhead for noise standard deviation estimation. To avoid the noise estimation

for the optimized regularization parameter, one possible method is to convert the CS-based

optimization problem into multiobjective optimization problem (MOP), and the corresponding

multiobjective evolutionary algorithms (MOEAs) is employed to yield better results than the

use of conventional single objective optimization solutions. MOP has gained increasing interest

[29]–[31] and have been proven to be beneficial for solving multiple contradictory objectives

simultaneously. The final solution of MOEAs is to approximate the Pareto optimal front. In [32],

a general MOEA based on differential evolution (DE) was proposed. Unlike other MOEAs, the

DE can easily solve large-scale optimization problem in massive MIMO system. To achieve the

satisfactory solutions of multiobjective schemes, the knee region of weakly Pareto front near the

ture solution must be preferred for the exploitation of the local search. It is worth noting that the

aforementioned works cannot be extended directly to IRS-based mmWave channel estimation,

due to the fact that the mmWave channel with IRS will make the problem highly complex and

difficult to solve, which is one of the major motivations to devote our endeavour to developing

efficient channel estimation for IRS-assisted mmWave MIMO systems.

As mentioned above, most of the existing studies [18], [19], [22], [23], [33]–[36] only

focus on the investigation of channel estimation algorithms in the presence of mmWave MIMO

channel model without considering the IRS technologies. In fact, IRS may play an important

role in providing high speed data throughput for the future mmWave MIMO communication

scenarios, such as the autonomous vehicular communications [37], high speed railway and tunnel

communications. In particular, as the development of urbanization, the line-of-sight (LoS) link

is blocked by more and more high-rise buildings emerge in dense down town. On the other

hand, the study in [15], [17], [24] adapts CS-based channel estimation to reliably estimate and

feed back the CSI, which achieves accurate CSI acquisition. These prior works are restricted to

conventional single objective design, which yield to the fixed solution path in the optimization

process and leads to the suboptimal sparse solution by fixed regularization parameter. This

motivates us to investigate a simple and yet efficient channel estimation scheme in IRS-assisted

mmWave massive MIMO systems.

In this work, we propose a sparse channel estimation scheme that combines CS techniques
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and a hybrid multiobjective evolutionary optimization method for IRS-assisted mmWave MIMO

systems. The key observation is exploiting CS-based sparse channel estimation to reduce the

training overhead and developing the multiobjective evolutionary method to find an optimal

tradeoff between competing objective functions. According to the MOP, a hybrid MOEA is

proposed to select the final solution of the channel estimation in the knee areas. To accurately

estimate knee regions, the maximum slope of the Pareto plot is exploited to determine the

final solution, which indicates the best balance between the measurement error and the sparsity

constraint whilst providing the best performance in sparse channel estimation. Moreover, formal

theoretical understanding of why MOEAs can estimate the sparse channel is largely missing

[29]–[31], [38], [39]. To solve this problem, we provide a convergence analysis for the proposed

hybrid MOEA by deriving a performance bound on the estimation error. The bound proves that

our method can estimate the sparse channel when the measurement matrix satisfies a properly

restricted isometry property (RIP). The main contributions are summarized as follows:

• To reduce the training overhead, we put forward a CS-based sparse recovery approach for

IRS-assisted mmWave channel estimation. By utilizing the properties of Kronecker products,

the original IRS-assisted channel estimation model can be reformulated as a cascade channel,

which is a classic CS-based sparse recovery problem.

• To provide adaptability to the sparse solution, the proposed sparse recovery problem is

transformed into MOPs. The corresponding hybrid MOEA based on DE is then developed

to solve the MOPs. In each iteration, the iterative hard thresholding (IHT) method is

integrated into the proposed hybrid MOEA, which is very crucial to significantly reduce

the computational cost of the selection process. Moreover, the parallel search scheme is

proposed to obtain diversifying the search along weakly Pareto front without optimizing

regularizing parameter.

• To support the applicability of the proposed hybrid MOEA, we derive a performance bound

on the channel estimation error and prove our method can converge to the neighborhood of

the true channel value. Moreover, we conduct numerical simulations to verify the perfor-

mance of the proposed method in comparison with existing channel estimation methods.

The rest of this paper is organized as follows. In Section II, the detailed description of

CS-based channel model in IRS-assisted mmWave system is proposed. Section III proposes

a hybrid multiobjective evolutionary approach for mmWave channel estimation. In Section IV,
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the convergence analysis of the proposed algorithm is provided. The simulation results on the

proposed hybrid MOEA are reported and analyzed in Section V. Section VI concludes the paper

and outlines the future research directions.

Notations: The boldface lower-case and upper-case symbols denote vectors and matrices

respectively. vec(A) is a vector obtained through the vectorization of a matrix A. ∥a∥p represents

the p-norm of a, where ai is the i-th component of vector a and p denotes an integer. The

superscripts (·)T , (·)H and (·)∗ represent the transpose, conjugate transpose and complex conjugat

respectively. X⊗Y denotes the Kronecker product of X and Y. R and C denote the set of real and

complex numbers, respectively. E[·] denotes the expectation and log(·) denotes the logarithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the IRS-assisted mmWave MIMO communication system is introduced. Then,

we formulate the IRS-assist mmWave channel optimization problem as a CS-based sparse re-

covery problem in the following.

A. System Model

We focus on the downlink transmission of an IRS-assisted mmWave MIMO system in Fig.

1, where an IRS is deployed to assist the signal transmission from the NBS antennas of the BS

to user equipment (UE). It is assumed that the IRS is a planar array with M reflecting elements

and the signals are reflected by the IRS once. The IRS is attached to the facade of a building

located in the LoS link of the BS. The phase shifts of each reflecting element on the IRS are

configurable via a smart controller, which gets this information from the BS over a backhaul

link [40]. Let R ∈ CM×NBS be the channel from the BS to the IRS, HH
r ∈ CNUE×M denotes the

channel from the IRS to the UE. This is a valid assumption as IRS is practically applied to

support UE without direct communication link from the BS due to deep path loss or obstacle

blockage. To this end, we neglect the LOS link from the BS to the UE. Furthermore, a time-

division duplexing is considered for the CSI acquisition by exploiting the characteristic of the

mmWave channel reciprocity.

As shown in Fig. 1, at t-th time frame, the transmitted beamforming at the BS side can be

written as

xt = Ftst, (1)
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Fig. 1. Illustration of the considered IRS-assisted millimeter-wave MIMO communication systems.

where st ∈ CNs denotes the transmitted pilot symbol and Ft ∈ CNBS×Ns is the transmit beam-

forming at the BS. We suppose the pilot satisfies E[stsHt ] = (Ps/Ns)INs and Ps is the transmitted

power of the BS.

For the channel training scheme in the above mentioned system, the BS sends out training

symbols st and the observed signal at the BS side in time slot t is

ŷt = Hxt + zt, (2)

where the zt is the additive Gaussian nosie (AWGN), and its elements are from complex

Gaussian distribution CN (0, σ2) [41]. After being multiplied with the hybrid combining matrix,

the received signal at the UE side can be expressed as

yt = WHHxt + nt, (3)

where W ∈ CNUE×Q denotes the combining matrix and nt = Wzt. H is the cascaded channel

matrix of the IRS that is given by

H = HH
r ΘR, (4)

where Θ ∈ CM×M is diagonal phase-shifting matrix of the IRS, which can be expressed as

Θ = diag
(
β1e

jθ1 , ..., βMejθM
)
, (5)

and θm ∈ [0, 2π), βm ∈ [0, 1], m = 1, ...,M being the m-th r phase shift of eflecting element

and amplitude reflection, respectively. To simplify hardware design of the IRS, we consider the

same βm for all the reflecting elements of the IRS.
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Fig. 2. Channel model of sparse channel estimation in IRS-assisted MIMO system.

With regard to the total T time frames, thus the received matrix at the UE side can be written

as

Y = WHHX + N, (6)

where Y = [y1, y2, ..., yT ] is a Q × T received matrix, X = [x1,x2, ...,xT ] is a NBS × T

beamforming matrix, N = [n1,n2, ..., nT ] is a Q × T noise matrix by concatenating the noise

vectors. The data path diagram is described in Fig. 2.

B. Problem Formulation

Before formulating the channel estimation problem, the channel model for the IRS-assisted

mmWave system should be described firstly. By smartly adjusting the phase shifts of each

scattering elements, as illustrated in Fig. 1. Due to the reflecting element of IRS no signal

processing, the superposed signal arrived at the IRS will be directly reflected towards the desired

UEs without any additional time domian delay. Hence, the time difference between the reflected

signal and the directed signal is marginal and thus can be ignored. According to the discussion

above, we take into account the cascade channel matrix H, which is divided into the BS-IRS

channel R and the IRS-UE channel Hr. The primary challenge is to estimate the BS-IRS and

the IRS-UE channel simultaneously. Nevertheless, we discover above channel model can be

converted to a CS-based sparse recovery problem. To be specific, the BS-IRS channel can be

modeled as [42], [43]

R =

√
NBSNIRS

ρ

L∑
l=1

αlaIRS,1(φl, γl)aH
BS(ϕl), (7)

where αl is the channel complex gain of the l-th path, L denotes the scattering paths of BS-IRS

link, and corresponding path loss is denoted as ρ. φl(γl) denotes the azimuth (elevation) angle
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of arrival (AoA) of the l-th path, ϕl is the angle of departure (AoD) of the l-th path; aIRS,1 and

aBS denote the array response associated with the IRS and BS, respectively. We assume that the

IRS is an Mx × My uniform planar array (UPA). Then the steering vectors at the IRS can be

written as [24]

aIRS,1(φl, γl) = ax(u)⊗ ay(v), (8)

where ⊗ stands for the Kronecker product. ax(u) and ay(v) are expressed as

ax(u) =
1√
Mx

[
1, e

j2πdu
λ ,...,e

j2π(Mx−1)du
λ

]T
,

ay(v) =
1√
My

[
1, e

j2πdv
λ ,...,e

j2π(My−1)dv

λ

]T
,

(9)

where u , cos(γl), v , sin(γl)cos(φl), d denotes the antenna spacing between neighboring

antenna elements and λ is the signal wavelength.

Due to the sparse scattering nature of mmWave, the number of path L is generally less than

the dimensions of R. The corresponding R can be expressed as

R = (Fx ⊗ Fy)ΣαFH
BS , FIRS,1ΣαFH

BS, (10)

where FIRS,1 = Fx⊗Fy ∈ CM×ML , Fx ∈ CMx×ML,x and Fy ∈ CMy×ML,y are defined with each of

its columns having a form of ax(u) and ay(v), respectively. u(v) chosen from a pre-discretized

grid, Σα ∈ CML×ML is a diagonal matrix with L non-zero entries corresponding to the channel

path gains
{√

NBSNIRS
ρ

αl

}
, in which ML = ML,x × ML,y, FBS ∈ CNBS×ML is an overcomplete

matrix and each of its columns has a form of aBS(ϕl), with ϕl chosen from a pre-discretized

grid.

Similar to the BS-IRS channel R, the IRS-UE channel can be modeled as

Hr =

√
NUENIRS

µ

L′∑
l′=1

cl′aUE(φl′ , γl′)aH
IRS,2(ϕl′), (11)

where cl′ denotes the complex gain associated with the l′-th path, L′ denotes the number of

IRS-UE channel path, µ denotes the average path loss of the IRS-UE link and φl′(γl′) denotes

the azimuth (elevation) angle of departure. Thus, the IRS-UE channel can also be written as

HH
r , FUEΣcFH

IRS,2, (12)
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where Σc ∈ CML′×ML′ is a sparse matrix with L′ non-zero entries corresponding to the channel

path gains
{√

NUENIRS
µ

cl′
}

, FIRS,2 ∈ CM×ML′ and FUE ∈ CNUE×ML′ are similarly defined with

each of its columns having a form of aIRS,2(φl′ , γl′) and aBS(ϕl′), respectively.

Substituting (10) and (12) into (4), the cascade channel model can be expressed as

vec(H) = vec
(
FUEΣcFH

IRS,2ΘFIRS,1ΣαFH
BS

)
(a)
= (F∗

BS ⊗ FUE) vec
(
ΣcFH

IRS,2ΘFIRS,1Σα

)
(b)
= (F∗

BS ⊗ FUE)
(
ΣT

α ⊗Σc

)
vec(FH

IRS,2ΘFIRS,1)

(c)
= (F∗

BS ⊗ FUE)
(
ΣT

α ⊗Σc

)
Du,

(13)

where (a) and (b) follow from the property of Kronecker product, (c) comes from u , vec(Θ) ∈

CM2 and D = FT
IRS,1 ⊗ FH

IRS,2 ∈ CMLML′×M2 .

With the proposed cascade channel design in (13), the received signal y = vec(Y) in (6) can

be written as

y =
(
XT ⊗ WH

)
vec(H) + vec(N)

(a)
=
(
XT ⊗ WH

)
(F∗

BS ⊗ FUE)
(
ΣT

α ⊗Σc

)
Du + vec(N)

(b)
= (Du)T ⊗

(
(XT ⊗ WH)(F∗

BS ⊗ FUE)
)

h + vec(N)

(c)
= Φh + e,

(14)

where (a) is based on the property of Kronecker product, (b) is obtained by h , vec(ΣT
α ⊗Σc)

and (c) comes form Φ , (DLu)T ⊗
(
(XT ⊗ WH)(F∗

BS ⊗ FUE)
)

and e = vec(N).

By the sparsity of the mmWave MIMO channel, we can obtain the Σα and Σc are sparse.

If the sparsity of Σα and Σc are L and L′, then h is a M2
LM

2
L′ vector with LL′-sparse. Since

the LL′ < M2
LM

2
L′ , the matrix D contains redundant columns. Based on the above analysis, the

channel estimation model in (14) is a classic CS-based sparse recovery problem [44], and thus

the CS theory can be employed to estimate h by solving the following sparse recovery problem:

min
h

{
G(h) =

1

2
∥y −Φh∥22 + λ∥h∥p

}
, (15)

where λ is regularization parameter to balance the measurement error term ∥y − Φh∥22 and

sparsity term ∥h∥p and p is usually set to 0 or 1. Here exists the problem of determining λ, as λ

is closely related to the precision of channel estimation. In fact, a relatively high value of λ may

lead to a sparse solution, whereas a small value may leads to a noisy result. Therefore, the main
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challenge in the optimization problem (15) is how to optimally choose suitable regularization

parameter so as to improve the performance of channel estimation.

Fig. 3 illustrates a simple experiment to demonstrate how the parameter λ affects the results

of the CS-based sparse recovery algorithm. As illustrated in Fig. 3, the horizontal axis denotes

some possible choices of regularization parameter λ, and the vertical axis plots the relative error

in terms of the difference between the true channel and the estimated sparse solutions. It can

be inferred from the above experiment that the regularization parameter λ significantly affects

the recovery quality. To this end, various strategies were studied to determine regularization

parameters in [25], [26], when the noise standard deviation is known assumption. There are

some existing works that focused on the noise standard deviation estimation [45], [46]. How-

ever, in practical applications, system environments are usually changed with time during the

measurement, the statistic character of the system noise and the observation noise cannot be

estimated or be determined accurately. Therefore, the selection of regularization parameter will

directly affects the performance of channel estimation.

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

λ

‖
h
−

ĥ
‖2 2

‖h
‖2 2

optimal parameter

Fig. 3. The performance of the LASSO algorithm with different choices of the regularization parameter λ.

It is interesting that this deficiency can be naturally alleviated by employing MOP. Next, a

hybrid MOEA is presented for MOP and show how it can be applied to estimate the IRS-assisted

channel estimation problem.
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III. MULTIOBJECTIVE EVOLUTIONARY APPROACH TO CHANNEL ESTIMATION

The MOEA has been widely used to solve MOP [32], [47], which can optimize multiple

objectives simultaneously and obtain a set of nondominated solutions approximating the Pareto-

optimal front. In this section, we first transform the single objective optimization problem (15)

to a bi-objective optimization problem; and then a hybrid evolutionary algorithm is proposed by

incorporating an IHT-based local search to achieve multiobjective optimization result. Finally,

the Pareto knee point is chosen as the solution. However, the selection of a point from the Pareto

front depends on the specific problem and the Pareto knee is not always the most appropriate

solution. Therefore, to address above difficulties and achieve accurate selection of knee regions,

the maximum slope of the Pareto plot is developed to determine the final solution by at a given

point.

Considering the measurement error and sparse constraint as two objectives function, the CS-

based sparse recovery problem (15) can be formulated as

min
h

G(h) = min
h

(
f1(h), f2(h)

)
, (16)

where f1(h) = 1
2
∥y −Φh∥22 denotes measurement error term and f2(h) = ∥h∥0 denotes sparse

constraint term.

A MOEA based on DE [32], [48], [49] is an efficient and reliable multiobjective evolutionary

algorithm to solve the MOP (16). However, the DE algorithm exploits the preferences on the

knee region of weakly PF, which lead to similar individuals in population. Furthermore, the

performance of DE depends on the setting of the original population. To overcome the weakness

in DE, we introduce a hybrid MOEA that exploit the the IHT-based local search and maximum

slope selection operator to reduce the computational cost and determine the final solution,

respectively.

The procedure of the proposed hybrid MOEA scheme is provided in Algorithm 1. Let P t =

[h1,t, h2,t, ..., hN,t] be the current population with size of N solutions, where hi,t denotes the i-th

solution of the population and t denotes the generation to which the population belongs. P t
mut

and P t
Cro are the number of individuals, which are obtained by the corresponding mutation and

crossover operators, respectively. Then, an IHT-based local search scheme is used to improve

the local search performance of the hybrid MOEA. If the termination condition is satisfied, the

optimal PF of algorithm is obtained. For decision process, the maximum slope of the Pareto plot

method is used to determine the knee points of the problem.
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Algorithm 1 The hybrid evolutionary-based sparse channel estimation
1: Initialization: t = 0, generate P t randomly and set the stopping criterion.

2: Input: y, Φ

3: For: i = 1 to Nt.

4: Implementation of mutation operator: Select k individual from population P t. The mutation

operator is applied to obtain the P t
mut = Mutation(P t);

5: Implementation of crossover operator: Select k individual from population P t
mut. The

mutation operator is applied to obtain the P t
Cro = Crossover(P t

mut);

6: Implementation of local search operator: Select individual from P t
Cro to generate P t

com

according to IHT-based local search operation;

7: Implementation of selection operator: The number of solutions dominated by (28);

8: End For

9: Implementation of the final solution: The Pareto knee point is determined by (29);

10: Output: h

A. Mutation and crossover operators

Mutation and crossover aim to generate the new individuals and the corresponding offspring

solution controlled by mutation and crossover factor. The mutation factor F and crossover

factor C largely affect the searching ability and premature convergence of algorithm. Therefore,

adaptive DE algorithm or its variations are exploited, e.g., self-adaptive DE (SaDE) [50]. In DE,

the random value is usually used in crossover operator to dynamically generate its offspring.

However, this random nature may lead to instability of offspring solution. To address the concern,

an improved mutation and crossover operator is exploited to generate promising solutions. We

adopt a factor-adaptive mechanism for mutation operation, which is given as follows

vi,t = hi,t + F (hr2,t − hr3,t) , (17)

where the hr2,t, and hr3,t are randomly selected within the current population P t and they are

different from hi,t. The corresponding mutation factor F is considered to scale the difference

results, that is

F =

 F0, if iteration = 1

F0e−2t/Gmax otherwise
(18)

and F0 is the initial value and Gmax is the maximum iterations.
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After the mutation operation, a crossover operator is carried out on vi,t and hi,t to generate a

trial vector, which is expressed as follows

zi,t =

 vi,t, if r ≤ C

hi,t otherwise,
(19)

where r is a random value within the interval [0,1], C is given by

C =

 C0, if iteration = 1

C0e−2t/Gmax otherwise,
(20)

and C0 is the initial value.

B. IHT-based local search operation

To generate better new individuals, an additional operation is developed, where the generated

individuals are further perturbed using a local search strategy improved from IHT [51]. To be

specific, we first introduce the IHT algorithm in detail and then describe how the local search

strategy is incorporated within the corresponding hybrid MOEA.

1) Introduction of IHT: IHT is one of gradient-based iterative algorithm that can solve

the optimization problem (15). Here, the IHT-based iterative mechanism is integrated into the

proposed MOEA that aims to improve local search results, which can be treat as a special case

of the following optimization problem

min
zi,t

{g(zi,t) = f1(zi,t) + ηif2(zi,t)} , zi,t ∈ P t
Cro (21)

where ηi is a coefficient that balances the tradeoff two competing function.

The optimization problem (21) is solved through a sequence of iterations
{

z(k)i,t , k = 1, 2, ..., K
}

,

where z(k+1)
i,t is obtained from the previous solution z(k)i,t by solving the following optimization

problem:

z(k+1)
i,t = argmin

zi,t
f1

(
z(k)i,t

)
+
(

zi,t − z(k)i,t

)T
∇f1

(
z(k)i,t

)
+
(

zi,t − z(k)i,t

)T
∇2f1

(
z(k)i,t

)(
zi,t − z(k)i,t

)
+ ηif2(zi,t)

≈ argmin
zi,t

(
zi,t − z(k)i,t

)T
∇f1

(
z(k)i,t

)
+

ρ
(k)
i

2

∥∥∥zi,t − z(k)i,t

∥∥∥2
2
+ ηif2(zi,t)

= argmin
zi,t

1

2

∥∥∥zi,t − d(k)
i,t

∥∥∥2
2
+

ηi

ρ
(k)
i

f2(zi,t),

(22)
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where the matrix ρ
(k)
i I is an estimation of the Hessian matrix ∇2f1

(
z(k)i,t

)
and

d(k)
i,t = z(k)i,t −

1

ρ
(k)
i

∇f1

(
z(k)i,t

)
. (23)

Now, the following equation can be obtained

z(k+1)
i,t = S

(
d(k)
i,t ,

ηi

ρ
(k)
i

)
= argmin

zi,t

1

2

(
zi,t − d(k)

i,t

)2
+

ηi

ρ
(k)
i

f2 (zi,t) (24)

where the closed-form solution of S
(

d(k)
i,t

)
is given by [52]

S
(

d(k)
i,t

)
=


(

d(k)
i,t

)
j

if
(

d(k)
i,t

)2
j
≥ ηi

ρ
(k)
i

0 otherwise
(25)

and (·)j denotes the j-th component of a vector.

2) Determining ηi and ρi: The performance of the algorithm greatly depends on the parameters

ηi and ρi. It worth noting that a lot of existing strategies have been investigated to choose the

optimal coefficient ηi by a continuation procedure. However, traditional IHT algorithms employ

the steady-state strategy, in which the same scalar ηi is utilized in iterative processing. The

strategy can provide a rather fixed search path but easily fall into suboptimal solutions. To address

this concern, some of the existing MOEA execute more effective parallel searching by using a

vector ηi = [ηi,1, ηi,2, ..., ηi,J ] in each generation, where each element of vector ηi is randomly

selected between 0 and 1 respectively. It is worth noting that the {ηi,j}j=1,...,J is different from

the λ in (15), due to ηi is formed by random vector without any optimization processes. The

operation is very crucial for diversifying the search along weakly Pareto front. However, it can

be noticed in optimization problem (21) that if a large of ηi,j is chosen (ηi,j ≥ ∥ΦT y∥∞), the zero

vector would be the unique solution [53]. Therefore, to avoid this phenomenon, a more accurate

parallel local search strategy is developed in IHT-based local search operation. Specifically, in

each generation, we use a vector κ whose elements are independent and identically distributed

standard normal random variables, produced by

ηi = κ
∥∥ΦT yi

∥∥
∞ , (26)

which improve the local search and guarantees useless attempts on generating zero solutions.
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Next, the parameter ρ(k)i is to be determined. It is shown that the IHT algorithm has different

strategies for choosing the parameter ρ
(k)
i . Inspired by [54], the Barizilai-Borwein method is

suggested to determine the parameter ρ(k)i . That is

ρ
(k)
i = min

ρ
(k)
i

∥∥∥ρ(k)i

(
z(k)i,t − z(k+1)

i,t

)
−
(
∇f1

(
z(k)i,t

)
−∇f1

(
z(k+1)
i,t

))∥∥∥2
2

=

(
z(k)i,t − z(k+1)

i,t

)T (
∇f1

(
z(k)i,t

)
−∇f1

(
z(k+1)
i,t

))
(

z(k)i,t − z(k+1)
i,t

)T (
z(k)i,t − z(k+1)

i,t

) .

(27)

The detailed procedure of local search strategy is summarized in Algorithm 2. This procedure

is crucial to guarantees improvement in two different ways: one is an improved spread within

the set of nondominated solutions and the other is a tendency to move from dominated toward

nondominated solutions. This improvement is beneficial to obtain the optimal nondominated

solutions on the PF.

Algorithm 2 Implementation of local search operation
1: Initialization: P t

Cro

2: Input: y, Φ, Imax

3: For: i = 1 to Nt.

4: z(1)i,t = P t
Cro(i), b0 = 0M×1

5: For: k = 1 to Imax.

6: b(k+1) = b(k) −
(
Φz(k)i,t − y

)
7: z(k+1)

i,t = S
(
ΦHb(k+1), λ

(k)

ρ(k)

)
8: End For

9: si,t = z(Imax)
i,t

10: End For

11: Output: {s1,t, s2,t, ..., sNt,t}

C. Selection operator

The selection scheme also different from that of existing DE algorithms. The solution of

current population is selected to generate the next population, and its corresponding temporary
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solution is given by using the following rule:

hi,t+1 =

 si,t if g(si,t) ≤ g (zi,t) ,

zi,t otherwise,
(28)

where si,t is the output result of IHT-based local search operation.

By using the (28), each temporary solution is compared with its counterpart in the current

population. The tournament selection is carried out to select the lower objective function value

that will survive to the population of the next generation. As a result, it is guaranteed that each

solution of the next generation are as well as or better than the current generation. It is worth

noting that temporary solution is not compared against all the solutions in the current population,

but only against its counterpart.

D. Acquisition of the final solution

In MOPs, the Pareto knee region provides promising trade-off between the two conflicting

objectives functions, and the near optimal solution is chosen in this region. It proves that the

Pareto knee point can be regarded as the final solution [31], [55], [56]. However, the problem

being tackled in this paper is more difficult than the problems described in [55], [56]. The mostly

problem is that: firstly, the problem is NP-hard, it is not easy to guarantee that the estimated PF

produced by the algorithm converges to the true PF. When some of the solutions not lie on the

PF, the distort result will be computed and solution strayed away from the knee region, which

leading to an incorrect estimation of the global optimal solution. The second difficulty is that

two objective functions ∥hi∥0 and ∥yi −Φhi∥22 are involved in the PF, but the ranges of these

two conflicting functions generally have different magnitudes. This can diminish the significance

of the differences in tradeoff angles between neighboring solutions. Since the population size

is usually fixed, the third difficulty is hard to obtain the solutions of population that adequately

collect the full range of the PF.

To overcome above difficulties and achieve accurate solution of selection, first we normalize

the PF by its maximum ∥hi∥0 and ∥yi − Φhi∥22 value, which can avoid the second difficulty

mentioned above. Next, the maximal slope is computed to choose the Pareto knee point as the

final solution. The basic thought is to determine the final solution by the maximum slope of the
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Pareto plot at a given point. To be specific, for a solution hi and corresponding value of two

objective function (f1(hi), f2(hi)), its slope variance ∆ϕi is

∆ϕi =
ϕi

ϕi−1

, ϕi = arctan

(
f1(hi)− f1(hi+1)

f2(hi)− f2(hi+1)

)
, (29)

where ϕi and ϕi−1 represent the slope at point i and i−1, respectively. ∆ϕi is the slope change at

point i and ∆ϕ0 = π/2. It follows that the solution with the maximum ∆ϕi value is considered

as the nearly optimal solution.

IV. CONVERGENCE ANALYSIS

In this section, the convergence analysis of the proposed MOEA algorithm is provided to

show that how the proposed approach can be applied to recover a sparse channel when the

measurement matrix satisfies a properly RIP condition. For a given matrix Φ, the 2s-th order

Restricted Isometry Constants (RIC) are the largest α and smallest β, such that [57]

α∥x1 + x2∥22 ≤ ∥Φ(x1 + x2)∥22 ≤ β∥x1 + x2∥22 (30)

holds for all s-sparse vector x1 and x2. In the (30), the vectors x1 and x2 are said to be s-sparse

if the number of nonzero components of x1 and x2 are smaller than or equal to s, i.e., ∥x1∥0 ≤ s,

∥x2∥0 ≤ s. Next, the convergence of the proposed hybrid MOEA is as follows. To simplify the

expression, the generation number t of the population is omitted in proof.

Theorem 1 For an arbitrary s-sparse channel hi, given yi = Φhi + ei, where Φ satisfies RIC

with Jθ < α and 2−
√
2

4
< θ < 1

2
, at least

k∗ = max



2 ln

(
(
√
α∥ni∥2)/

√
Jθ∥yi∥2

)
ln( θ

2+2θ−1
θ2

)

 , 1

 (31)

iterations, the proposed hybrid evolutionary algorithm calculates a solution satisfying∥∥hi − hk+1
i

∥∥
2
≤

(
1 +

√
Jθ
α

)
∥ni∥2 + δ, (32)

where δ =
√

JθλNθ2

α(1−2θ)
, Jθ =

(2+8θ)2(2θ−θ2)
(8θ−8θ2−1)2

and ∥ni∥2 =
√

2−2θ
1−2θ

∥evi∥2+
√

2−2θ
θ2

+ (θ−θ2)2

(1−2θ)(2θ−θ2)
∥ei∥2

with ∥Φ(hi − vi)∥2 ≤ ∥evi∥2.

Proof: The convergence result is based on the RIP in (30), under the constraint that ∥hi∥0 ≤

s, where s is the maximum sparsity of channel. By the sparsity of the RIS-assisted mmWave

channel, it is observed in (15) that the channel hi is sparse and the sparsity is less than its



19

dimensionality. However, hk+1
i is the intermediate result of the algorithm at the k+1-the iteration.

With this case, hk+1
i is no longer guaranteed to be s-sparse. This issue has brought challenges

to convergence analysis. To deal with this issue, we let hk+1
i,s be the best approximation to hk+1

i

with no more than s non-zero elements. This implies that∥∥hk+1
i,s − hk+1

i

∥∥2
2
≤ ∥hi − hk+1

i ∥22 (33a)

⇔
∥∥hk+1

i,s − hi

∥∥
2
≤ 2∥hk+1

i − hi∥2. (33b)

Thus we first derive an upper bound for the error
∥∥hi − hk+1

i

∥∥2
2
. This will be done using a

chain of inequalities, the first of which is a simple triangle inequality:∥∥hi − hk+1
i

∥∥2
2

= ∥hk+1
i,s − hi∥22 + ∥hk+1

i,s − hk+1
i ∥22 − 2⟨hk+1

i,s − hk+1
i , hk+1

i,s − hi⟩

= ∥hk+1
i,s − hi∥22 − ∥hk+1

i,s − hk+1
i ∥22 − 2⟨hk+1

i,s − hk+1
i ,hk+1

i − hi⟩
(a)
= ∥hk+1

i,s − hi∥22 − ∥hk+1
i,s − hk+1

i ∥22 + 2× 1

4

(
∥hk+1

i,s − hk+1
i − (hk+1

i − hi)∥22 − ∥hk+1
i,s − hi∥22

)
(b)

≤ 1

2
∥hk+1

i,s − hi∥22 − ∥hk+1
i,s − hk+1

i ∥22 +
1

2θ
(∥hk+1

i,s − hk+1
i ∥22 − ∥hk+1

i − hi∥22) +
1

2θ(1− θ)
∥hk+1

i − hi∥22

(c)

≤ 1

2
∥hk+1

i,s − hi∥22 − ∥hk+1
i,s − hk+1

i ∥22 +
1

θ
∥hi − hk+1

i ∥2∥hk+1
i,s − hi∥2 +

1

2θ(1− θ)
∥hk+1

i − hi∥22

(d)

≤ 3

2
∥hk+1

i,s − hi∥22 − ∥hi − hk+1
i ∥22 +

1

θ
∥hi − hk+1

i ∥2∥hk+1
i,s − hi∥2 +

1

2θ(1− θ)
∥hk+1

i − hi∥22

(e)

≤ 4θ + 1

θ
∥hk+1

i,s − hi∥2∥hi − hk+1
i ∥2 +

(
6θ2 − 6θ + 1

2θ(1− θ)

)
∥hi − hk+1

i ∥22,

(34)

where (a) is from the fact that ⟨a, b⟩ = 1
4
(∥a + b∥22 − ∥a − b∥22) and (b) is from

∥(1− θ)a + θb∥22 ≥ 0 (35a)

⇔ (1− θ)∥a∥22 + θ∥b∥22 − θ(1− θ)∥a − b∥22 ≥ 0 (35b)

⇔ ∥a − b∥22 ≤
1

θ
∥a∥22 +

1

1− θ
∥b∥22 (35c)

⇔ ∥a − b∥22 ≤
1

θ
(∥a∥22 − ∥b∥22) +

1

θ(1− θ)
∥b∥22, (35d)

for any 0 < θ < 1, a, b ∈ Cn, (c) is from the fact that

∥hk+1
i,s − hk+1

i ∥22 − ∥hk+1
i − hi∥22

(33a)

≤ 2∥hi − hk+1
i ∥2(∥hk+1

i,s − hk+1
i ∥2 − ∥hk+1

i − hi∥2)

≤ 2∥hi − hk+1
i ∥2∥hk+1

i,s − hi∥.2
(36)
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and (d) is from ∥hk+1
i,s − hk+1

i ∥22 ≥ ∥hi − hk+1
i ∥22 − ∥hi − hk+1

i,s ∥22, and (e) is from (33b) and

∥hk+1
i,s − hi∥22 − ∥hi − hk+1

i ∥22
(33b)

≤ 3∥hi − hk+1
i ∥2(∥hk+1

i,s − hi∥2 − ∥hi − hk+1
i ∥2). (37)

After rearranging the terms (34), considering the condition 2−
√
2

4
< θ < 1

2
in Theorem 1, we

obtain ∥∥hi − hk+1
i

∥∥
2
≤ (2 + 8θ)(1− θ)

8θ − 8θ2 − 1
∥hk+1

i,s − hi∥2. (38)

On the other hand, for the vector ĥi = (1− θ)hk+1
i,s + θhk+1

i , we have∥∥∥Φ((1− θ)hk+1
i,s + θhk+1

i

)
− yi

∥∥∥2
2
≥ ∥Φhk+1

i,s − yi∥22 − θ2∥Φ(hk+1
i,s − hk+1

i )∥22
(35c)

≥ ∥Φhk+1
i,s − yi∥22 + θ2

(
1

θ − 1
∥Φhk+1

i − yi∥22 −
1

θ
∥Φhk+1

i,s − yi∥22
)

=
θ2

θ − 1
∥Φhk+1

i − yi∥22 + (1− θ)∥Φhk+1
i,s − yi∥22,

(39)

and ∥∥∥Φ((1− θ)hk+1
i,s + θhk+1

i

)
− yi

∥∥∥2
2
≤ (1− θ)2∥Φhk+1

i,s − yi∥22 + θ2∥Φhk+1
i − yi∥22. (40)

Combining (39) and (40), considering the condition 2−
√
2

4
< θ < 1

2
in Theorem 1, we obtain

∥∥Φhk+1
i,s − yi

∥∥2
2
≤ τ∥Φhk+1

i − yi∥22. (41)

where τ = 2θ−θ2

(1−θ)2
.

Therefore, the (38) can be further expressed as∥∥hi − hk+1
i

∥∥2
2
≤
(
(2 + 8θ)(1− θ)

8θ − 8θ2 − 1

)2

∥hk+1
i,s − hi∥22

(a)

≤ 1

α

(
(2 + 8θ)(1− θ)

8θ − 8θ2 − 1

)2 (
∥yi −Φhk+1

i,s ∥22 + ∥ei∥22
)

(b)

≤ Jθ
α

(
∥yi −Φhk+1

i ∥22 +
1

τ
∥ei∥22

)
.

(42)

where (a) is from the RIP condition in (30) and (b) follows from the fact that (41) and Jθ =

(2+8θ)2(2θ−θ2)
(8θ−8θ2−1)2

.

According to (28) in the proposed algorithm, we consider the value hk+1
i of (42) in the

following two cases.
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1) Case 1: if g(hk+1
i ) ≤ g

(
zki
)

in (28), we have∥∥yi −Φhk+1
i

∥∥2
2
−
∥∥yi −Φzki

∥∥2
2
≤ λ(∥zki ∥0 − ∥hk+1

i ∥0) ≤ λN, (43)

where N is dimension of the vectors hk+1
i , zki , k = 0, ..., K − 1.

Substituting (43) into (42) gives∥∥hi − hk+1
i

∥∥2
2
≤ Jθ

α

(∥∥yi −Φzki
∥∥2
2
+ λN +

1

τ
∥ei∥22

)
. (44)

According to (19) in the proposed algorithm, each iteration of the value zki depends on vki and

hk
i . Thus, if r ≤ C, the value of vki satisfies∥∥ΦF

(
hk
r2 − hk

r3

)∥∥2
2

(a)
=
∥∥Φ(vki − hk

i )
∥∥2
2

=
1

θ2
(
∥θ(Φvki − yi)− θ(Φhk

i − yi)∥22
)

(b)
<

1

θ2
(
(1− θ)∥yi −Φvki ∥2 + θ∥yi −Φhk

i ∥2
)2

=
1− θ

θ2
(∥yi −Φvki ∥2 − ∥yi −Φhk

i ∥2)

×
(
(1− θ)∥yi −Φvki ∥2 + (1 + θ)∥yi −Φhk

i ∥2
)
+

1

θ2
∥yi −Φhk

i ∥22,

(45)

where (a) is from the (17) and (b) is from the condition θ < 1
2
.

Moreover, it is easy to see that

∥yi −Φvki ∥22 − ∥yi −Φhk
i ∥22 = 2⟨Φ(hk

i − vki ), yi −Φhk
i ⟩+ ∥Φ(hk

i − vki )∥22
(a)
=

1

2

(
∥yi −Φvki ∥22 − ∥Φ(hk

i − vki )− (yi −Φhk
i )∥22

)
+ ∥Φ(hk

i − vki )∥22

≥ 1

2

(
∥yi −Φvki ∥22 − ∥Φ(hk

i − vki )∥22 − ∥yi −Φhk
i ∥22
)
+ ∥Φ(hk

i − vki )∥22

=
1

2

(
∥yi −Φvki ∥22 − ∥yi −Φhk

i ∥22
)
+

1

2
∥Φ(hk

i − vki )∥22,

(46)

where (a) is from the fact that ⟨a, b⟩ = 1
4
(∥a + b∥22 − ∥a − b∥22).

From the inequality (46), we notice that
∥∥yi −Φvki ∥2 ≥ ∥yi −Φhk

i

∥∥
2
, which along with in-

equality (45) yields the desired result given by∥∥ΦF
(
hk
r2 − hk

r3

)∥∥2
2
≤ 2(1− θ)

θ2
(
∥yi −Φvki ∥22 − ∥yi −Φhk

i ∥2∥yi −Φvki ∥2
)
+

1

θ2
∥yi +Φhk

i ∥22

≤ 2θ − 1

θ2
∥yi −Φhk

i ∥22 +
2(1− θ)

θ2
∥yi −Φvki ∥22

≤ 2θ − 1

θ2
∥yi −Φhk

i ∥22 +
2(1− θ)

θ2
∥Φ(hi − vki )∥22 +

2(1− θ)

θ2
∥ei∥22.

(47)
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Defining ∥Φ(hi − vi)∥2 ≤ ∥evi∥2, substituting (47) into (44) gives∥∥hi − hk+1
i

∥∥2
2
≤ Jθ

α

(∥∥∥yi −Φ
(

hk
i + F (hk

r2 − hk
r3)
)∥∥∥2

2
+ λN +

1

τ
∥ei∥22

)
≤ Jθ

α

((
θ2 + 2θ − 1

θ2

)∥∥yi −Φhk
i

∥∥2
2
+ λN +

2− 2θ

θ2
∥evi∥22 +

(
2− 2θ

θ2
+

1

τ

)
∥ei∥22

)
,

(48)

With the condition in Theorem 1, Jθ < α, θ < 1
2
, we can iterate the above expression as

∥∥hi − hk+1
i

∥∥
2
≤
√

Jθ
α

(
θ2 + 2θ − 1

θ2

) k
2

∥yi∥2 +
√

Jθ
α
∥ni∥2 + δ. (49)

where ∥ni∥2 =
√

2−2θ
1−2θ

∥evi∥2 +
√

2−2θ
1−2θ

+ θ2

τ(1−2θ)
∥ei∥2 and δ =

√
JθλNθ2

α(1−2θ)
.

From (31), by recursive iteration,
√

Jθ
α

(
θ2+2θ−1

θ2

) k
2 ∥yi∥2 ≤ ∥ni∥2 should be satisfied. Clearly,

for each k > k∗, there exits∥∥hi − hk+1
i

∥∥
2
≤

(
1 +

√
Jθ
α

)
∥ni∥2 + δ. (50)

2) Case 2: From (28), it is easy to show that zki is equivalent to hk+1
i , and thus (42) is

rewritten as∥∥hi − hk+1
i

∥∥2
2
≤ Jθ

α

((
θ2 + 2θ − 1

θ2

)∥∥yi −Φhk
i

∥∥2
2
+

2− 2θ

θ2
∥evi∥22 +

(
2− 2θ

θ2
+

1

τ

)
∥ei∥22

)
.

(51)

Similarly, by recursive iteration,
√

Jθ
α

(
θ2+2θ−1

θ2

) k
2 ∥yi∥2 ≤ ∥ni∥2 will be satisfied. Thus, we

can still obtain the following inequality:∥∥hi − hk+1
i

∥∥
2
≤

(
1 +

√
Jθ
α

)
∥ni∥2 <

(
1 +

√
Jθ
α

)
∥ni∥2 + δ. (52)

By comparing the upper bound of the
∥∥hi − hk+1

i

∥∥
2

obtained in the above two cases, the one

with higher bound value is chosen to satisfy the inequality (32). On the other hand, it is found

that if the condition r > C in (17), we have zki = hk
i . In this case, above convergence analysis

is still valid by setting ∥ΦF
(
hk
r2 − hk

r3

)
∥22 = 0. Therefore, the Theorem 1 is guaranteed to

converge according to the proposed hybrid evolutionary algorithm.

Remark: (i) In general, the convergence of the algorithm relies on the number of iterations.

However, in the realistic situation incorporating sparsity defect and measurement error, the
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number of iterations is difficult to control. To this end, we show that the algorithm can converge

when the number of iterations satisfies (31).

(ii) The error constant δ is considered in convergence result, which is more reasonable for the

proposed hybrid evolutionary algorithm. Since the value of δ =
√

Jθθ2

α(1−2θ)
λN relies primarily on

(43) with respect to g(hk+1
i ) ≤ g

(
zki
)
, this procedure is implemented in mutation and crossover

processing of the algorithm. Our aim is to take the advantage of mutation and crossover operator

to generate better new individuals. It is thus theoretically feasible to employ the error constant

δ in (32), which would be benefit some of individuals to approximate the Pareto optimal front.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed channel estimation scheme for

IRS-assist MIMO system with IRS. We consider the IRS equipped with UPA at both BS and

UE sides and operating over a mmWave channel. The performance of proposed hybrid MOEA

is experimentally compared to existing channel estimation algorithms, i.e., OMP [20], two-stage

estimation exploiting both sparsity and low rankness (TSSR) [58]. We also consider the oracle LS

scheme as our benchmark, where the support of the IRS-assisted mmWave channel is assumed

to be perfectly known. To validate the generalization of the proposed channel estimation, some

randomly generated 1-D sparse hi,t ∈ P 0 are used which are obtained in the following way [59].

At first, the nonzero entries of the channel are randomly selected which constitute the active set.

Then, the magnitudes of these entries are obtained from the standard normal distribution.

TABLE I

THE PROPOSED CHANNEL FRAMEWORK PARAMETERS FOR SIMULATION

Parameters Parameters

Mutation factor: F0 = 0.9 Path loss for BS-IRS link: αρ = 1.4

Crossover factor: C0 = 0.1, 0.2, 0.3, 0.4 Path loss for IRS-UE link: αµ = 2

Passive reflecting elements: M = 8× 8 The BS-IRS horizontal distance: from 20 to 60 m

Carrier frequency: fc = 28 The training length T : 10, 15, 20, 25, 30, 35, 40

The reference distance: D0 = 1m The number of data path: L = 6

To evaluate the performance of channel estimation schemes, we compare the perfect CSI

estimation in terms of both the normalized mean square error (NMSE) and the achievable spectral
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Fig. 4. NMSEs of respective algorithms versus the SNR (Nt = 36).

efficiency (SE). The NMSE is considered to quantify the accuracy of channel estimation, which

is mathematically defined as NMSE , 10 log10
∥h−ĥ∥2

2

∥h∥22
, where ĥ denotes the estimation for the

true channel h with the considered techniques. Apparently, when the value of NMSE is smaller,

the estimated channel ĥ is closer to the true channel h. In other words, the NMSE value is zero,

which indicates that the estimated ĥ is the perfect estimation of h.

To account for small-scale fading, the Rician fading model is adopted for channel R between

the IRS and the UE, which can be modeled as [4]

Rr =

√
K

K + 1
RLoS +

√
1

K + 1
RNLoS (53)

where RLoS and RNLoS denote the LoS component and NLoS component components, respectively.

The counterparts for the channel Hr can also be modeled similarly.

In the first simulation, the NMSE performance of our proposed strategy for channel estimation

is studied, and some benchmark schemes are introduced for performance comparison and anal-

ysis. In Fig. 4 and Fig. 5, we compare the NMSEs and spectral efficiency of different channel

estimation schemes versus the SNR levels. It can be observed that the oracle LS estimator

achieves the best NMSE performance for all channel estimation method. On the other hand, one

can note that, using the hybrid MOEA to solve the proposed IRS-based channel estimation model,

which can obtain significant NMSE improvement compared with conventional OMP and TSSR.

The reason is that the classical OMP adopts fixed search path and easily fall into suboptimal

solutions. On the contrary, the proposed hybrid MOEA exploit the parallel local search strategy

for diversifying the search, which can achieve effective performance improvement. In addition,
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Fig. 6. Convergence behavior of the hybrid MOEA in terms of spectral efficiency.

one can observe that the proposed algorithm performs remarkably with a small gap compared to

the benchmark of the oracle LS estimator. The performance gap is attributed to the presence of

path loss and noise. These results demonstrate that the proposed hybrid MOEA is more suitable

for IRS-based channel estimation.

Next, the convergence behavior of the hybrid MOEA is investigated to illustrate how the

spectral efficiency behaves with the number of iterations. From Fig. 6, it is observed that the

hybrid MOEA can converge to a stable value, and the initiation of crossover operator slightly

affects the convergence speed of the hybrid MOEA. Furthermore, the fixed value of spectral

efficiency is obtianed when the number of iteration over 60 iterations under the crossover factor

C0 = 0.2, 0.3, 0.4. It worth noting that if C0 = 0.1 is chosen, the iterative number for stable
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Fig. 7. Relationship between NMSE, measurement error and the sparsity of the solutions on PF and the position of knee regions.

point is reduced to 45. This result demonstrates that the proposed hybrid MOEA can converge

to a stable point nearly within 60 iterations.

In the following, we study the existence of a knee area for the proposed hybrid MOEA

algorithm. Fig. 7 shows the relationship between the NMSE, the measurement error term and

the sparse constraint term in the corresponding solutions. The corresponding left-hand column
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in Fig. 7 shows 3-D views of the three variables together. The right-hand column of Fig. 7

depicts 2-D plots of the measurement error ∥y − Φh∥22 with change in sparsity. From the of

arrow direction in left-hand column of Fig. 7, it is not difficult to find the knee region of Pareto

front. On the other hand, (a), (b) and (c) in Fig. 7 show the horizontal position of knee points

varies with different SNR levels. We can notice that under the high SNR levels, the sparsity

estimation rapidly deteriorates for points to the right of the knee region, while providing a little

improvement in measurement error. The results indicate that the Pareto front in the knee areas

are consistent with the solution of the true channel. However, it can be found that under the low

SNR case, the the knee points are not clear in SNR=15dB of Fig. (7), which may lead to difficult

to chose the final solution in knee areas. Therefore, the proposed hybrid MOEA exploiting the

maximum slope of the Pareto plot can effectively resolve the issue. It noted that the maximal

slope is chosen as an optimal solution of the knee areas to the CS-based sparse recovery problem,

because any further attempt to improve sparsity will result in rapid deterioration in ∥y −Φh∥22
for only very slightly increases in accuracy.

In Fig.8, we plot the achievable MSE of different channel estimation schemes versus the BS-

IRS distance d. From the results, we can see that compared to the OMP, TSSR can achieve

nearly the performance of OMP when the BS-IRS horizontal distance from 25 to 60m. On the

other hand, it is observed that the proposed scheme using the hybrid MOEA yields a significant

gain over the other counterparts, no matter the BS-IRS horizontal distance.
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Next, to see the influence of the training length T on the performance of the algorithms, the

NMSE performance versus the pilot sequence length T is provided in Fig. 9. It is obvious that

the proposed hybrid MOEA achieves a suboptimal solution and significantly better than the OMP

and closely approaches the oracle LS, under the same training length T . This result indicates that

to achieve the same NMSE performance, the proposed scheme required training length are far

less than the benchmark OMP scheme. Furthermore, we also investigate that the improvement

of the NMSE performance of the proposed hybrid MOEA can be negligible when the value of

L large than 25, while the OMP need more training to improve the NMSE performance.



29

Finally, we further analyze and discuss the impact of the proposed channel estimation on the

number of IRS elements. Fig. 10 illustrates the SE performance versus the number of reflecting

element M under the proposed channel estimation. It can be seen that the SE performance gains

achieved by the IRS scheme over the ‘without IRS’ scheme, especially for the large number of

phase shifters M . This is mainly related to the fact that an additional strong channel is reflected

by the IRS, which can be harvested by the UE. These results also demonstrate that the proposed

IRS-based channel estimation is effective to expand the communication range. In addition, as

expected, the performance of the method ‘without IRS’ is not affected by the number of the IRS

elements in the system.

On the other hand, it is observed that the proposed hybrid MOEA scheme generally increases

as the number of reflecting element M . The reasons for the signals reflected by IRS can be

added to increase the desired signal strength at the UE, and hence the different frequencies have

more degree-of-freedom for the reflection element of IRS design. In next research work, we

will consider the proposed method appling to the wideband mmWave systems that the wideband

channel is partitioned into multiple subchannels, the original channel will be split in the frequency

domain to achieve channel estimation.

VI. CONCLUSION

In this paper, we studied the mmWave channel estimation problem for IRS-assisted commu-

nication systems. Under the proposed framework, the cascade channel estimation approach is

developed using the properties of Kronecker products. By exploiting the inherent sparse structure

of the mmWave channel, we formulate the cascaded channel estimation problem into a CS-based

sparse recovery problem that can achieve a substantial training overhead reduction. Under the

proposed channel estimation problem, a hybrid multiobjective evolutionary paradigm is developed

to achieve high resolution channel estimation. Furthermore, we provide the convergence analysis

for the hybrid evolutionary-based channel estimation algorithm. Simulation results show that the

proposed method can be significantly improved in terms of NMSE as well as achievable SE.
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