8 research outputs found

    Bandwidth fuelling for network mobility

    Full text link

    Stochastic Models of TCP Flows over 802 11 WLANs

    Get PDF
    This technical report develops an analytical framework to model the interaction between TCP and 802:11 MAC protocol over a WLAN, when concurrent TCP downlink and uplink connections are active. Assuming a TCP advertised window equal to one, we formulate a Markov model to characterize the dynamic network contention level, de ned as the expected number of wireless stations having at least a frame to transmit. Exploiting the stochastic characterization of the dynamic contention level induced by the TCP ow control, we develop an accurate model of the MAC protocol behavior to evaluate the TCP throughput performance. Comparison with simulation results validates the model, which provides the analytical basis for the optimization of the system performance. In particular, we prove that using a TCP advertised window equal to one ensures a fair access to the TCP ows of the channel bandwidth, irrespective of the number of TCP downlink or uplink connections. Moreover, we show that the aggregate TCP throughput is almost independent of the number of wireless stations in the network

    Performance Modelling and Measurements of TCP Transfer Throughput in 802.11based WLANs

    Get PDF
    The growing popularity of the 802.11 standard for building local wireless networks has generated an extensive literature on the performance modelling of its MAC protocol. However, most of the available studies focus on the throughput analysis in saturation conditions, while very little has been done on investigating the interactions between the 802.11 MAC protocol and closed-loop transport protocols such as TCP. This paper addresses this issue by developing an analytical model to compute the stationary probability distribution of the number of backlogged nodes in a WLAN in the presence of persistent TCP-controlled download and upload data transfers. By embedding the network backlog distribution in the MAC protocol modelling, we can precisely estimate the throughput performance of TCP connections. A large set of experiments conducted in a real network validates the model correctness for a wide range of configurations. A particular emphasis is devoted to investigate and explain the TCP fairness characteristics. Our analytical model and the supporting experimental outcomes demonstrate that using default settings for the capacity of devices\u27 output queues provides a fair allocation of channel bandwidth to the TCP connections, independently of the number of downstream and upstream flows. Furthermore, we show that the TCP total throughput does not degrade by increasing the number of wireless stations

    Comprehensive performance analysis of a TCP session over a wireless fading link with queueing

    No full text

    Physical layer model design for wireless networks

    Get PDF
    Wireless network analysis and simulations rely on accurate physical layer models. The increased interest in wireless network design and cross-layer design require an accurate and efficient physical layer model especially when a large number of nodes are to be studied and building the real network is not possible. For analysis of upper layer characteristics, a simplified physical layer model has to be chosen to model the physical layer. In this dissertation, the widely used two-state Markov model is examined and shown to be deficient for low to moderate signal-to-noise ratios. The physical layer statistics are investigated, and the run length distributions of the good and bad frames are demonstrated to be the key statistics for accurate physical layer modeling. A four-state Markov model is proposed for the flat Rayleigh fading channel by approximating the run length distributions with a mixture of exponential distributions. The transition probabilities in the four-state Markov model can be established analytically without having to run extensive physical layer simulations, which are required for the two-state Markov model. Physical layer good and bad run length distributions are compared and it is shown that the four-state Markov model reasonably approximates the run length distributions. Ns2 simulations are performed and the four-state Markov model provides a much more realistic approximation compared to the popular two-state Markov model. Achieving good results with the flat Rayleigh fading channel, the proposed four-state Markov model is applied to a few diversity channels. A coded orthogonal fre- quency division multiplexing (OFDM) system with a frequency selective channel and the Alamouti multiple-input multiple-output system are chosen to verify the accuracy of the four-state Markov model. The network simulation results show that the four-state Markov model approximates the physical layer with diversity channel well whereas the traditional two-state Markov model estimates the network throughput poorly. The success of adapting the four-state Markov model to the diversity channel also shows the flexibility of adapting the four-state Markov model to various channel conditions

    TCP performance enhancement in wireless networks via adaptive congestion control and active queue management

    Get PDF
    The transmission control protocol (TCP) exhibits poor performance when used in error-prone wireless networks. Remedy to this problem has been an active research area. However, a widely accepted and adopted solution is yet to emerge. Difficulties of an acceptable solution lie in the areas of compatibility, scalability, computational complexity and the involvement of intermediate routers and switches. This dissertation rexriews the current start-of-the-art solutions to TCP performance enhancement, and pursues an end-to-end solution framework to the problem. The most noticeable cause of the performance degradation of TCP in wireless networks is the higher packet loss rate as compared to that in traditional wired networks. Packet loss type differentiation has been the focus of many proposed TCP performance enhancement schemes. Studies conduced by this dissertation research suggest that besides the standard TCP\u27s inability of discriminating congestion packet losses from losses related to wireless link errors, the standard TCP\u27s additive increase and multiplicative decrease (AIMD) congestion control algorithm itself needs to be redesigned to achieve better performance in wireless, and particularly, high-speed wireless networks. This dissertation proposes a simple, efficient, and effective end-to-end solution framework that enhances TCP\u27s performance through techniques of adaptive congestion control and active queue management. By end-to-end, it means a solution with no requirement of routers being wireless-aware or wireless-specific . TCP-Jersey has been introduced as an implementation of the proposed solution framework, and its performance metrics have been evaluated through extensive simulations. TCP-Jersey consists of an adaptive congestion control algorithm at the source by means of the source\u27s achievable rate estimation (ARE) —an adaptive filter of packet inter-arrival times, a congestion indication algorithm at the links (i.e., AQM) by means of packet marking, and a effective loss differentiation algorithm at the source by careful examination of the congestion marks carried by the duplicate acknowledgment packets (DUPACK). Several improvements to the proposed TCP-Jersey have been investigated, including a more robust ARE algorithm, a less computationally intensive threshold marking algorithm as the AQM link algorithm, a more stable congestion indication function based on virtual capacity at the link, and performance results have been presented and analyzed via extensive simulations of various network configurations. Stability analysis of the proposed ARE-based additive increase and adaptive decrease (AJAD) congestion control algorithm has been conducted and the analytical results have been verified by simulations. Performance of TCP-Jersey has been compared to that of a perfect , but not practical, TCP scheme, and encouraging results have been observed. Finally the framework of the TCP-Jersey\u27s source algorithm has been extended and generalized for rate-based congestion control, as opposed to TCP\u27s window-based congestion control, to provide a design platform for applications, such as real-time multimedia, that do not use TCP as transport protocol yet do need to control network congestion as well as combat packet losses in wireless networks. In conclusion, the framework architecture presented in this dissertation that combines the adaptive congestion control and active queue management in solving the TCP performance degradation problem in wireless networks has been shown as a promising answer to the problem due to its simplistic design philosophy complete compatibility with the current TCP/IP and AQM practice, end-to-end architecture for scalability, and the high effectiveness and low computational overhead. The proposed implementation of the solution framework, namely TCP-Jersey is a modification of the standard TCP protocol rather than a completely new design of the transport protocol. It is an end-to-end approach to address the performance degradation problem since it does not require split mode connection establishment and maintenance using special wireless-aware software agents at the routers. The proposed solution also differs from other solutions that rely on the link layer error notifications for packet loss differentiation. The proposed solution is also unique among other proposed end-to-end solutions in that it differentiates packet losses attributed to wireless link errors from congestion induced packet losses directly from the explicit congestion indication marks in the DUPACK packets, rather than inferring the loss type based on packet delay or delay jitter as in many other proposed solutions; nor by undergoing a computationally expensive off-line training of a classification model (e.g., HMM), or a Bayesian estimation/detection process that requires estimations of a priori loss probability distributions of different loss types. The proposed solution is also scalable and fully compatible to the current practice in Internet congestion control and queue management, but with an additional function of loss type differentiation that effectively enhances TCP\u27s performance over error-prone wireless networks. Limitations of the proposed solution architecture and areas for future researches are also addressed
    corecore