19 research outputs found

    Synthesising visual speech using dynamic visemes and deep learning architectures

    Get PDF
    This paper proposes and compares a range of methods to improve the naturalness of visual speech synthesis. A feedforward deep neural network (DNN) and many-to-one and many-to-many recurrent neural networks (RNNs) using long short-term memory (LSTM) are considered. Rather than using acoustically derived units of speech, such as phonemes, viseme representations are considered and we propose using dynamic visemes together with a deep learning framework. The input feature representation to the models is also investigated and we determine that including wide phoneme and viseme contexts is crucial for predicting realistic lip motions that are sufficiently smooth but not under-articulated. A detailed objective evaluation across a range of system configurations shows that a combined dynamic viseme-phoneme speech unit combined with a many-to-many encoder-decoder architecture models visual co-articulations effectively. Subjective preference tests reveal there to be no significant difference between animations produced using this system and using ground truth facial motion taken from the original video. Furthermore, the dynamic viseme system also outperforms significantly conventional phoneme-driven speech animation systems

    Discovering Dynamic Visemes

    Get PDF
    Abstract This thesis introduces a set of new, dynamic units of visual speech which are learnt using computer vision and machine learning techniques. Rather than clustering phoneme labels as is done traditionally, the visible articulators of a speaker are tracked and automatically segmented into short, visually intuitive speech gestures based on the dynamics of the articulators. The segmented gestures are clustered into dynamic visemes, such that movements relating to the same visual function appear within the same cluster. Speech animation can then be generated on any facial model by mapping a phoneme sequence to a sequence of dynamic visemes, and stitching together an example of each viseme in the sequence. Dynamic visemes model coarticulation and maintain the dynamics of the original speech, so simple blending at the concatenation boundaries ensures a smooth transition. The efficacy of dynamic visemes for computer animation is formally evaluated both objectively and subjectively, and compared with traditional phoneme to static lip-pose interpolation

    Expressive Modulation of Neutral Visual Speech

    Get PDF
    The need for animated graphical models of the human face is commonplace in the movies, video games and television industries, appearing in everything from low budget advertisements and free mobile apps, to Hollywood blockbusters costing hundreds of millions of dollars. Generative statistical models of animation attempt to address some of the drawbacks of industry standard practices such as labour intensity and creative inflexibility. This work describes one such method for transforming speech animation curves between different expressive styles. Beginning with the assumption that expressive speech animation is a mix of two components, a high-frequency speech component (the content) and a much lower-frequency expressive component (the style), we use Independent Component Analysis (ICA) to identify and manipulate these components independently of one another. Next we learn how the energy for different speaking styles is distributed in terms of the low-dimensional independent components model. Transforming the speaking style involves projecting new animation curves into the lowdimensional ICA space, redistributing the energy in the independent components, and finally reconstructing the animation curves by inverting the projection. We show that a single ICA model can be used for separating multiple expressive styles into their component parts. Subjective evaluations show that viewers can reliably identify the expressive style generated using our approach, and that they have difficulty in identifying transformed animated expressive speech from the equivalent ground-truth

    Cross Modal Evaluation of High Quality Emotional Speech Synthesis with the Virtual Human Toolkit

    Get PDF
    Emotional expression is a key requirement for intelligent virtual agents. In order for an agent to produce dynamic spoken content speech synthesis is required. However, despite substantial work with pre-recorded prompts, very little work has explored the combined effect of high quality emotional speech synthesis and facial expression. In this paper we offer a baseline evaluation of the naturalness and emotional range available by combining the freely available SmartBody component of the Virtual Human Toolkit (VHTK) with CereVoice text to speech (TTS) system. Results echo previous work using pre-recorded prompts, the visual modality is dominant and the modalities do not interact. This allows the speech synthesis to add gradual changes to the perceived emotion both in terms of valence and activation. The naturalness reported is good, 3.54 on a 5 point MOS scale

    Modelling talking human faces

    Get PDF
    This thesis investigates a number of new approaches for visual speech synthesis using data-driven methods to implement a talking face. The main contributions in this thesis are the following. The accuracy of shared Gaussian process latent variable model (SGPLVM) built using the active appearance model (AAM) and relative spectral transform-perceptual linear prediction (RASTAPLP) features is improved by employing a more accurate AAM. This is the first study to report that using a more accurate AAM improves the accuracy of SGPLVM. Objective evaluation via reconstruction error is performed to compare the proposed approach against previously existing methods. In addition, it is shown experimentally that the accuracy of AAM can be improved by using a larger number of landmarks and/or larger number of samples in the training data. The second research contribution is a new method for visual speech synthesis utilising a fully Bayesian method namely the manifold relevance determination (MRD) for modelling dynamical systems through probabilistic non-linear dimensionality reduction. This is the first time MRD was used in the context of generating talking faces from the input speech signal. The expressive power of this model is in the ability to consider non-linear mappings between audio and visual features within a Bayesian approach. An efficient latent space has been learnt iii Abstract iv using a fully Bayesian latent representation relying on conditional nonlinear independence framework. In the SGPLVM the structure of the latent space cannot be automatically estimated because of using a maximum likelihood formulation. In contrast to SGPLVM the Bayesian approaches allow the automatic determination of the dimensionality of the latent spaces. The proposed method compares favourably against several other state-of-the-art methods for visual speech generation, which is shown in quantitative and qualitative evaluation on two different datasets. Finally, the possibility of incremental learning of AAM for inclusion in the proposed MRD approach for visual speech generation is investigated. The quantitative results demonstrate that using MRD in conjunction with incremental AAMs produces only slightly less accurate results than using batch methods. These results support a way of training this kind of models on computers with limited resources, for example in mobile computing. Overall, this thesis proposes several improvements to the current state-of-the-art in generating talking faces from speech signal leading to perceptually more convincing results

    A Multimodal Sensor Fusion Architecture for Audio-Visual Speech Recognition

    Get PDF
    A key requirement for developing any innovative system in a computing environment is to integrate a sufficiently friendly interface with the average end user. Accurate design of such a user-centered interface, however, means more than just the ergonomics of the panels and displays. It also requires that designers precisely define what information to use and how, where, and when to use it. Recent advances in user-centered design of computing systems have suggested that multimodal integration can provide different types and levels of intelligence to the user interface. The work of this thesis aims at improving speech recognition-based interfaces by making use of the visual modality conveyed by the movements of the lips. Designing a good visual front end is a major part of this framework. For this purpose, this work derives the optical flow fields for consecutive frames of people speaking. Independent Component Analysis (ICA) is then used to derive basis flow fields. The coefficients of these basis fields comprise the visual features of interest. It is shown that using ICA on optical flow fields yields better classification results than the traditional approaches based on Principal Component Analysis (PCA). In fact, ICA can capture higher order statistics that are needed to understand the motion of the mouth. This is due to the fact that lips movement is complex in its nature, as it involves large image velocities, self occlusion (due to the appearance and disappearance of the teeth) and a lot of non-rigidity. Another issue that is of great interest to audio-visual speech recognition systems designers is the integration (fusion) of the audio and visual information into an automatic speech recognizer. For this purpose, a reliability-driven sensor fusion scheme is developed. A statistical approach is developed to account for the dynamic changes in reliability. This is done in two steps. The first step derives suitable statistical reliability measures for the individual information streams. These measures are based on the dispersion of the N-best hypotheses of the individual stream classifiers. The second step finds an optimal mapping between the reliability measures and the stream weights that maximizes the conditional likelihood. For this purpose, genetic algorithms are used. The addressed issues are challenging problems and are substantial for developing an audio-visual speech recognition framework that can maximize the information gather about the words uttered and minimize the impact of noise
    corecore