1,059 research outputs found

    Leveraging Contextual Cues for Generating Basketball Highlights

    Full text link
    The massive growth of sports videos has resulted in a need for automatic generation of sports highlights that are comparable in quality to the hand-edited highlights produced by broadcasters such as ESPN. Unlike previous works that mostly use audio-visual cues derived from the video, we propose an approach that additionally leverages contextual cues derived from the environment that the game is being played in. The contextual cues provide information about the excitement levels in the game, which can be ranked and selected to automatically produce high-quality basketball highlights. We introduce a new dataset of 25 NCAA games along with their play-by-play stats and the ground-truth excitement data for each basket. We explore the informativeness of five different cues derived from the video and from the environment through user studies. Our experiments show that for our study participants, the highlights produced by our system are comparable to the ones produced by ESPN for the same games.Comment: Proceedings of ACM Multimedia 201

    Foul prediction with estimated poses from soccer broadcast video

    Full text link
    Recent advances in computer vision have made significant progress in tracking and pose estimation of sports players. However, there have been fewer studies on behavior prediction with pose estimation in sports, in particular, the prediction of soccer fouls is challenging because of the smaller image size of each player and of difficulty in the usage of e.g., the ball and pose information. In our research, we introduce an innovative deep learning approach for anticipating soccer fouls. This method integrates video data, bounding box positions, image details, and pose information by curating a novel soccer foul dataset. Our model utilizes a combination of convolutional and recurrent neural networks (CNNs and RNNs) to effectively merge information from these four modalities. The experimental results show that our full model outperformed the ablated models, and all of the RNN modules, bounding box position and image, and estimated pose were useful for the foul prediction. Our findings have important implications for a deeper understanding of foul play in soccer and provide a valuable reference for future research and practice in this area

    A Survey of Deep Learning in Sports Applications: Perception, Comprehension, and Decision

    Full text link
    Deep learning has the potential to revolutionize sports performance, with applications ranging from perception and comprehension to decision. This paper presents a comprehensive survey of deep learning in sports performance, focusing on three main aspects: algorithms, datasets and virtual environments, and challenges. Firstly, we discuss the hierarchical structure of deep learning algorithms in sports performance which includes perception, comprehension and decision while comparing their strengths and weaknesses. Secondly, we list widely used existing datasets in sports and highlight their characteristics and limitations. Finally, we summarize current challenges and point out future trends of deep learning in sports. Our survey provides valuable reference material for researchers interested in deep learning in sports applications

    SoccerNet-Caption: Dense Video Captioning for Soccer Broadcasts Commentaries

    Full text link
    Soccer is more than just a game - it is a passion that transcends borders and unites people worldwide. From the roar of the crowds to the excitement of the commentators, every moment of a soccer match is a thrill. Yet, with so many games happening simultaneously, fans cannot watch them all live. Notifications for main actions can help, but lack the engagement of live commentary, leaving fans feeling disconnected. To fulfill this need, we propose in this paper a novel task of dense video captioning focusing on the generation of textual commentaries anchored with single timestamps. To support this task, we additionally present a challenging dataset consisting of almost 37k timestamped commentaries across 715.9 hours of soccer broadcast videos. Additionally, we propose a first benchmark and baseline for this task, highlighting the difficulty of temporally anchoring commentaries yet showing the capacity to generate meaningful commentaries. By providing broadcasters with a tool to summarize the content of their video with the same level of engagement as a live game, our method could help satisfy the needs of the numerous fans who follow their team but cannot necessarily watch the live game. We believe our method has the potential to enhance the accessibility and understanding of soccer content for a wider audience, bringing the excitement of the game to more people

    Detecting complex events in user-generated video using concept classifiers

    Get PDF
    Automatic detection of complex events in user-generated videos (UGV) is a challenging task due to its new characteristics differing from broadcast video. In this work, we firstly summarize the new characteristics of UGV, and then explore how to utilize concept classifiers to recognize complex events in UGV content. The method starts from manually selecting a variety of relevant concepts, followed byconstructing classifiers for these concepts. Finally, complex event detectors are learned by using the concatenated probabilistic scores of these concept classifiers as features. Further, we also compare three different fusion operations of probabilistic scores, namely Maximum, Average and Minimum fusion. Experimental results suggest that our method provides promising results. It also shows that Maximum fusion tends to give better performance for most complex events

    SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in Soccer Videos

    Full text link
    Tracking objects in soccer videos is extremely important to gather both player and team statistics, whether it is to estimate the total distance run, the ball possession or the team formation. Video processing can help automating the extraction of those information, without the need of any invasive sensor, hence applicable to any team on any stadium. Yet, the availability of datasets to train learnable models and benchmarks to evaluate methods on a common testbed is very limited. In this work, we propose a novel dataset for multiple object tracking composed of 200 sequences of 30s each, representative of challenging soccer scenarios, and a complete 45-minutes half-time for long-term tracking. The dataset is fully annotated with bounding boxes and tracklet IDs, enabling the training of MOT baselines in the soccer domain and a full benchmarking of those methods on our segregated challenge sets. Our analysis shows that multiple player, referee and ball tracking in soccer videos is far from being solved, with several improvement required in case of fast motion or in scenarios of severe occlusion.Comment: Paper accepted for the CVsports workshop at CVPR2022. This document contains 8 pages + reference
    corecore