5,397 research outputs found

    Compositional Schedulability Analysis of Hierarchical Real-Time Systems

    Get PDF
    Embedded systems are complex as a whole but consist of smaller independent modules interacting with each other. This structure makes them amenable to compositional design. Real-time embedded systems consist of realtime workloads having deadlines. Compositional design of such systems can be done using real-time components arranged in a scheduling hierarchy. Each component consists of some real-time workload and a scheduling policy for the workload. To simplify schedulability analysis for such systems, analysis should be done compositionally using interfaces that abstract timing requirement of components. To facilitate analysis of dynamically changing systems, the framework should also support incremental analysis. In this paper, we overview our approach to compositional and incremental schedulability analysis of hierarchical real-time systems. We describe a compositional analysis technique that abstracts resource requirement of components using periodic resource models. To support incremental analysis and resource bandwidth minimization, we describe an extension to this interface model. Each extended interface consists of multiple periodic resource models for different periods. This allows the selection of a periodic model that can schedule the system using minimum bandwidth. We also account for context switch overhead of components in these extended interfaces. We then describe an associative composition technique for such interfaces, that supports incremental analysis

    A Modeling Framework for Schedulability Analysis of Distributed Avionics Systems

    Get PDF
    This paper presents a modeling framework for schedulability analysis of distributed integrated modular avionics (DIMA) systems that consist of spatially distributed ARINC-653 modules connected by a unified AFDX network. We model a DIMA system as a set of stopwatch automata (SWA) in UPPAAL to analyze its schedulability by classical model checking (MC) and statistical model checking (SMC). The framework has been designed to enable three types of analysis: global SMC, global MC, and compositional MC. This allows an effective methodology including (1) quick schedulability falsification using global SMC analysis, (2) direct schedulability proofs using global MC analysis in simple cases, and (3) strict schedulability proofs using compositional MC analysis for larger state space. The framework is applied to the analysis of a concrete DIMA system.Comment: In Proceedings MARS/VPT 2018, arXiv:1803.0866

    A Compositional Approach for Schedulability Analysis of Distributed Avionics Systems

    Get PDF
    This work presents a compositional approach for schedulability analysis of Distributed Integrated Modular Avionics (DIMA) systems that consist of spatially distributed ARINC-653 modules connected by a unified AFDX network. We model a DIMA system as a set of stopwatch automata in UPPAAL to verify its schedulability by model checking. However, direct model checking is infeasible due to the large state space. Therefore, we introduce the compositional analysis that checks each partition including its communication environment individually. Based on a notion of message interfaces, a number of message sender automata are built to model the environment for a partition. We define a timed selection simulation relation, which supports the construction of composite message interfaces. By using assume-guarantee reasoning, we ensure that each task meets the deadline and that communication constraints are also fulfilled globally. The approach is applied to the analysis of a concrete DIMA system.Comment: In Proceedings MeTRiD 2018, arXiv:1806.09330. arXiv admin note: text overlap with arXiv:1803.1105

    MorphoSys: efficient colocation of QoS-constrained workloads in the cloud

    Full text link
    In hosting environments such as IaaS clouds, desirable application performance is usually guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated for unencumbered use for proper operation. Arbitrary colocation of applications with different SLAs on a single host may result in inefficient utilization of the host’s resources. In this paper, we propose that periodic resource allocation and consumption models -- often used to characterize real-time workloads -- be used for a more granular expression of SLAs. Our proposed SLA model has the salient feature that it exposes flexibilities that enable the infrastructure provider to safely transform SLAs from one form to another for the purpose of achieving more efficient colocation. Towards that goal, we present MORPHOSYS: a framework for a service that allows the manipulation of SLAs to enable efficient colocation of arbitrary workloads in a dynamic setting. We present results from extensive trace-driven simulations of colocated Video-on-Demand servers in a cloud setting. These results show that potentially-significant reduction in wasted resources (by as much as 60%) are possible using MORPHOSYS.National Science Foundation (0720604, 0735974, 0820138, 0952145, 1012798

    A distributed Real-Time Java system based on CSP

    Get PDF
    CSP is a fundamental concept for developing software for distributed real time systems. The CSP paradigm constitutes a natural addition to object orientation and offers higher order multithreading constructs. The CSP channel concept that has been implemented in Java deals with single- and multi-processor environments and also takes care of the real time priority scheduling requirements. For this, the notion of priority and scheduling has been carefully examined and as a result it was reasoned that priority scheduling should be attached to the communicating channels rather than to the processes. In association with channels, a priority based parallel construct is developed for composing processes: hiding threads and priority indexing from the user. This approach simplifies the use of priorities for the object oriented paradigm. Moreover, in the proposed system, the notion of scheduling is no longer connected to the operating system but has become part of the application instead

    Periodic Resource Model for Compositional Real-Time Guarantees

    Get PDF
    We address the problem of providing compositional hard real-time guarantees in a hierarchy of schedulers. We first propose a resource model to characterize a periodic resource allocation and present exact schedulability conditions for our proposed resource model under the EDF and RM algorithms. Using the exact schedulability conditions, we then provide methods to abstract the timing requirements that a set of periodic tasks demands under the EDF and RM algorithms as a single periodic task. With these abstraction methods, for a hierarchy of schedulers, we introduce a composition method that derives the timing requirements of a parent scheduler from the timing requirements of its child schedulers in a compositional manner such that the timing requirement of the parent scheduler is satisfied, if and only if, the timing requirements of its child schedulers are satisfied

    Compositional Real-Time Scheduling Framework

    Get PDF
    Our goal is to develop a compositional real-time scheduling framework so that global (system-level) timing properties can be established by composing independently (specified and) analyzed local (component-level) timing properties. The two essential problems in developing such a framework are (1) to abstract the collective real-time requirements of a component as a single real-time requirement and (2) to compose the component demand abstraction results into the system-level real-time requirement. In our earlier work, we addressed the problems using the Liu and Layland periodic model. In this paper, we address the problems using another well-known model, a bounded-delay resource partition model, as a solution model to the problems. To extend our framework to this model, we develop an exact feasibility condition for a set of bounded-delay tasks over a bounded-delay resource partition. In addition, we present simulation results to evaluate the overheads that the component demand abstraction results incur in terms of utilization increase. We also present new utilization bound results on a bounded-delay resource model

    Optimal co-design of control, scheduling and routing in multi-hop control networks

    Full text link
    A Multi-hop Control Network consists of a plant where the communication between sensors, actuators and computational units is supported by a (wireless) multi-hop communication network, and data flow is performed using scheduling and routing of sensing and actuation data. Given a SISO LTI plant, we will address the problem of co-designing a digital controller and the network parameters (scheduling and routing) in order to guarantee stability and maximize a performance metric on the transient response to a step input, with constraints on the control effort, on the output overshoot and on the bandwidth of the communication channel. We show that the above optimization problem is a polynomial optimization problem, which is generally NP-hard. We provide sufficient conditions on the network topology, scheduling and routing such that it is computationally feasible, namely such that it reduces to a convex optimization problem.Comment: 51st IEEE Conference on Decision and Control, 2012. Accepted for publication as regular pape
    • …
    corecore