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Abstract

We address the problem of providing compositional hard real-time guarantees in a hierarchy of schedulers. We first
propose a resource model to characterize a periodic resource allocation and present exact schedulability conditions for our
proposed resource model under the EDF and RM algorithms. Using the exact schedulability conditions, we then provide
methods to abstract the timing requirements that a set of periodic tasks demands under the EDF and RM algorithms as a
single periodic task. With these abstraction methods, for a hierarchy of schedulers, we introduce a composition method that
derives the timing requirements of a parent scheduler from the timing requirements of its child schedulers in a compositional
manner such that the timing requirement of the parent scheduler is satisfied, if and only if, the timing requirements of its child
schedulers are satisfied.

1. Introduction

Scheduling is to assign resources according to scheduling policies in order to service workloads. The scheduling can be
accurately characterized by a scheduling model that consists of three elements: a resource model, a scheduling algorithm,
and a workload model. In real-time scheduling, there has been a growing attention to a hierarchical scheduling framework
[4, 8, 10, 12, 5] that supports hierarchical resource sharing under different scheduling algorithms for different scheduling
services. A hierarchical scheduling framework can be generally represented as a tree, or a hierarchy, of nodes, where each
node represents a scheduling model and a resource is allocated from a parent node to its children nodes, as illustrated in
Figure 1. To characterize such a resource allocation between a parent node and a child node, we consider a scheduling
interface model I(GS , GD), where GS represents the real-time guarantee that the parent node supplies to the child node and
GD represents the real-time guarantee that the child node demands to the parent node. It is desirable that such a hierarchical
scheduling framework satisfies the following properties: (1) independence: the schedulability of a scheduling model is
analyzed independent of other scheduling models, (2) separation: a parent scheduling model and each child scheduling
model are separated such that they interact with each other only through a scheduling interface model, (3) universality:
any scheduling algorithm can be employed in a scheduling model, and (4) compositionality: a parent scheduling model
is computed from its child scheduling models such that the timing guarantee of the parent scheduling model is satisfied,
if and only if, the timing guarantees of its child scheduling models are satisfied together in the framework. In this paper,
we introduce a scheduling interface model for constructing a hierarchical scheduling framework that meets these desirable
properties.

Deng and Liu [4] and Lipari and Baruah [10] introduced hierarchical scheduling frameworks where a scheduling interface
model I(GS , GD) is implicitely specified in terms of a uniformly slow resource, or a fractional resource RF (UF ) that is
always available only at a fractional capacity UF . A parent scheduling model provides a fractional resource RF (GS) to a
child scheduling model, and the child model demands a fractional resource RF (GD) to the parent model. The schedulability
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Figure 1. Hierarchcial scheduling framework: parent and children scheduling models.

of the child scheduling model is analyzed with GS according to the traditional scheduling theories, and GD can be easily
derived from this schedulability analysis. However, GD does not capture any task-level timing requirements of the child
model. Thus, the parent model’s scheduler was limited to the EDF scheduler that needs to interact with the child model’s
scheduler for the knowledge of the task-level deadline information.

Feng and Mok [5] proposed the bounded-delay resource partition modelRB(UB , DB) for a hierarchical scheduling frame-
work. This resource partition model describes a behavior of a partitioned resource that is available at its full capacity at some
times but not available at all at the other times, with reference to a fractional resourceRF (UB). The following property holds
between RB(UB , DB) and RF (UB): when an event e happens t time after another event e′ over RF , the time distance be-
tween e and e′ overRB is between t−DB and t+DB . This property yields the following sufficient schedulability condition:
a scheduling model is schedulable over RB if all the tasks in the scheduling model complete their execution DB time earlier
than their deadlines over RF . This bounded-delay resource partition model RB(UB , DB) can be used for specifying the
real-time guarantees supplied from a parent model to a child model. The schedulability of the child model is then sufficiently
analyzed with RB(UB , DB) accordingly. Even though the child model runs over a partitioned resource, its schedulability is
analyzed as if it runs over a fractional resource. Thus, the scheduling algorithms in all child models are required to handle
this difference by employing the notion of virtual time scheduling.

Regehr and Stankovic [12] introduced another hierarchical scheduling framework that considers various kinds of real-time
guarantees. An implicit scheduling interface model I(GS , GD) is specified such that GS and GD can be of different kinds
of real-time guarantees. They focused on converting one kind of guarantee to another kind of guarantee such that whenever
the former is satisfied, the latter is satisifed. With their conversion rules, the schedulability of the child model is sufficiently
analyzed such that it is schedulable if GS is converted to GD. They assumed that GD is given for any child model and did
not consider the problem of deriving GD from a child model, which we address in this paper.

In this paper, we propose a periodic resource modelRP (Π,Θ) for a scheduling interface model in a hierarchical scheduling
framework. The periodic resource model can characterize a resource allocation of Θ time units every Π time units. When
this periodic resource is given as the real-time guarantees supplied from a parent model to a child model, we introduce the
necessary and sufficient schedulability conditions for the child model with the EDF and RM scheduling algorithms. Using
this exact schedulability analysis, the real-time guarantees demanded by a child model to a parent model can be derived as
a traditional periodic task model [11]. With a scheduling interface model that is specified in terms of a periodic resource
model and a periodic task model, we introduce a composition method to develop a parent scheduling model from its child
scheduling models in a compositional manner. In addition, we derive the utilization bounds of a periodic resource and the
capacity bounds of a periodic resource for a set of peridic tasks under the EDF and RM algorithms, respectively.

The rest of this paper is organized as follows: Section 2 presents our system models and problem statements. Section 3
proposes a periodic resource model. For a scheduling model that contains our proposed resource model, Section 4 presents
its schedulability analysis and Section 5 provides its schedulability bounds for the RM scheduling algorithm and the EDF
scheduling algorithm, respectively. Section 6 shows a composition method for a hierarchical scheduling framework that
supports compositional real-time guarantees. Finally, we conclude in Section 7 with discussion on future research.

2. System Model and Problem Statement

A scheduling modelM is defined as (W,R,A), whereW is a workload model that describes the workloads (applications)
supported in the scheduling model, R is a resource model that describes the resources available to the scheduling model, and
A is a scheduling algorithm that defines how the workloads share the resources at all times. For the workload model, we
consider the Liu and Layland periodic task model [11] that defines a task T as (p, e), where p is the period of T and e is the
execution time requirement of T . In this paper, we assume that each task is independent and preemptive. For the scheduling
algorithm, we use the rate monotonic (RM) algorithm, which is an optimal fixed-priority algorithm, or the earliest deadline
first (EDF) algorithm, which is an optimal dynamic scheduling algorithm. For the resource model, we consider a partitioned
resource model. For instance, the bounded-delay resource partition model RB(UB , DB) is a good example of a partitioned
resource model, where UB is the overall capacity (utilization) of a partitioned resource andDB is the bounded delay between
the partitioned resource and a fractional resource with a capacity UB [5]. A scheduling model M(W,R,A) is said to be
schedulable if a set of periodic workloads W is schedulable under a scheduling algorithm A with a partitioned resource R.
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Figure 2. Resource supply function: (a) how to calculate the minimum resource supply of Γ during t
and (b) the minimum resource supply and its linear lower-bound for Γ(5, 3).

Example 2.1 shows how to model a partitioned resource with a bounded-delay resource partition model RB(UB , DB) and
then shows how to analyze the schedulability of a scheduling model containing RB(UB , DB). This example is a motivating
example to show the difficulty of a schedulability analysis with a partitioned resource.

Example 2.1 Consider two periodic tasks, T1(7, 3) and T2(21, 1), that are to execute under the EDF scheduling algorithm
with a partitioned resource R that guarantees the resource allocations of 3 time units every 5 time units. In modeling this
partitioned resourceR with a bounded-delay resource partition modelRB(UB , DB), UB andDB are determined as follows:

UB = 3/5 and DB = 4, by Definitions 4 and 7 in [5].

Then, we can construct a scheduling model M as M({T1, T2}, RB(0.6, 4), EDF ). Over the fractional resource with a
fractional capacity UB = 0.6, T1 and T2 finish their execution at least D time units earlier than their deadlines, where
D = 2 in this example. According to Theorem 1 in [5], M is schedulable if D ≥ DB . In this example, since D = 2 and
DB = 4, it turns out D < DB . Hence, the schedulability of M is inconclusive1.

The bounded-delay resource partition model is introduced to characterize a delay between a partitioned resource and its
corresponding fractional resource, not necessarily to characterize a periodic behavior of a partitioned resource. In this paper,
we propose a periodic resource model Γ(Π,Θ) that describes a partitioned resource guaranteeing an allocation of Θ time
units every Π time unit period. With our proposed periodic resource model, it is possible to consider the following problems.

1. Exact schedulability analysis: givenW,Γ, andA, determine whether or notM(W,Γ, A) is schedulable in the necessary
and sufficient way.

2. Periodic capacity bound: given W ,A, and Π, find the smallest possible periodic capacity bound (Θ∗/Π) such that
M(W,Γ(Π,Θ), A) is schedulable if Θ ≥ Θ∗. This problem can be viewed as modeling a workload task set W under
algorithm A as a single periodic task T (p, e) by abstracting its timing requirements such that p = Π and e = Θ∗.

3. Utilization bound: given Γ and A, find the largest possible utilization bound UB such that M(W,Γ, A) is schedulable
if ∑

Ti∈W

ei

pi
≤ UB.

4. Algorithm set: given W and Γ, find a set of algorithms A such that M(W,Γ, A) is schedulable if A ∈ A.

5. Compositional guarantee: given n scheduling models, derive a new scheduling model from the n scheduling models
such that we call the new scheduling model a parent scheduling model of the n models and that the parent scheduling
model is schedulable, if and only if, the n child models are schedulable.

In this paper, we address the problems #1, #2, #3, and #5, but not the problem #4.

3. Periodic Resource Model

For real-time systems, the Liu and Layland periodic task model [11] and its various extensions have been accepted as
a workload model that accurately characterizes many traditional hard real-time applications, such as digital control and
constant bit-rate voice/video transmission. Many scheduling algorithms based on this workload model have been shown
to have good performance and well-understood behaviors. We define a periodic application as a real-time application that
consists of periodic tasks and thus exhibits a periodic behavior. In abstracting a periodic application with a workload model,

1It is shown in Example 4.1 that the schedulability of M is conclusive, when the partitioned resource R is modeled with our proposed periodic resource
model.
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we naturally consider an approach to abstract it as a single periodic task2. We can then directly use the traditional real-time
scheduling theories based on the periodic task model. When a resource is allocated to a workload such that the workload’s
periodic timing requirement is satisfied, then the resource allocation to the workload clearly has a periodic behavior. Thus,
there needs to be a resource model that characterizes accurately a periodic behavior of a resource allocation. We propose a
periodic resource model Γ(Π,Θ) in order to characterize a partitioned resource that guarantees allocations of Θ time units
every Π time units, where a resource period Π is a positive integer and a resource allocation time Θ is a real number in (0,Π].
For example, Γ(5, 3) describes a partitioned resource that guarantees 3 time units every 5 time units, and Γ(k, k) represents
a dedicated resource that is available all the time, for any integer k.

We define the resource supply of a resource as the amount of resource allocations that the resource provides. During a
time interval, a dedicated resource can clearly provide a resource supply equal to the interval length, however, a partitioned
resource is to provide a resource supply that is smaller than or equal to the interval length. For a periodic resource Γ(Π,Θ),
we define a resource supply bound function sbfΓ(t) of a time interval length t that calculates the minimum resource supply
of Γ during t time units as follows:

sbfΓ(t) =
⌊ t− (Π−Θ)

Π

⌋
·Θ + εs, (1)

where

εs = max
(
t− (Π−Θ)−Π

⌊ t− (Π−Θ)
Π

⌋
− (Π−Θ), 0

)
= max

(
t− 2(Π−Θ)−Π

⌊ t− (Π−Θ)
Π

⌋
, 0
)
.

Figure 2 (a) illustrates how Eq. (1) calculates the minimum resource supply of Γ during t. The supply bound function sbfΓ

is a non-decreasing step function. Here, the following lemma introduces a linear function that lower-bounds sbfΓ(t).

Lemma 1 A linear supply bound function lsbfΓ(t) lower-bounds sbfΓ(t) as follows:

lsbfΓ(t) =
Θ
Π

(t− 2 · (Π−Θ)) ≤ sbfΓ(t).

Proof. We consider two cases depending on the value of εs in sbfΓ(t): (1) εs = 0 and (2) εs > 0.
For the first case where εs = 0,

t− 2(Π−Θ)−Π
⌊ t− (Π−Θ)

Π

⌋
≤ 0. (2)

In this case,

sbfΓ(t) = Θ
⌊ t− (Π−Θ)

Π

⌋
.

From Eq. (2), we have
Θ
Π

(t− 2(Π−Θ)) ≤ Θ
⌊ t− (Π−Θ)

Π

⌋
. (3)

Eq. (3) shows lsbfΓ(t) ≤ sbfΓ(t).
For the second case where εs > 0,

t− 2(Π−Θ)−Π
⌊ t− (Π−Θ)

Π

⌋
> 0. (4)

In this case,

sbfΓ(t) = t− 2(Π−Θ)− (Π−Θ)
⌊ t− (Π−Θ)

Π

⌋
.

From Eq. (4), we have
t− 2(Π−Θ)

Π
−
⌊ t− (Π−Θ)

Π

⌋
> 0. (5)

2In this paper, we do not address the issue of modeling a non-periodic application as a single periodic task. This issue has been addressed well in the
literature [9, 14, 15, 4].
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Figure 3. Service time function: (a) how to calculate the maximum service service of Γ for a supply
of t = t1 + t2 + t3 and (b) the maximum service time and its linear upper-bound for Γ(5, 3).

With Eq. (5) and the definition of Θ (0 < Θ ≤ Π), we have

sbfΓ(t)− lsbfΓ(t)

= (Π−Θ)
( t− 2(Π−Θ)

Π
−
⌊ t− (Π−Θ)

Π

⌋)
> 0.

2

Example 3.1 Consider a periodic resource Γ(5, 3). Figure 2 (b) plots its minimum supply sbfΓ(t) and its linear supply
lower bound lsbfΓ(t). For instance, during a time interval of 10 time units, the periodic resource Γ(5, 3) supplies at least a
resource allocation of 4 time units.

We define the service time of a resource as the duration that it takes for the resource to provide a resource supply. It is
obvious that it takes a service time of t time units for a dedicated resource to provide a resource supply of t time units. It is
also clear that it takes a service time longer than or equal to t time units for a partitioned resource to provide a resource supply
of t time units. For a periodic resource Γ(Π,Θ), we define a service time bound function tbfΓ(t) of a resource supply of t
that calculates the maximum service time of Γ for a t-time-unit resource supply as follows:

tbfΓ(t) = (Π−Θ) + Π ·
⌊ t

Θ

⌋
+ εt, (6)

where

εt =

{
Π−Θ + t−Θ

⌊
t
Θ

⌋
if
(
t−Θ

⌊
t
Θ

⌋
> 0
)

0 otherwise
(7)

Figure 3 (a) illustrates how Eq. (6) calculates the maximum service time of Γ for a resource supply of t. The service
time bound function tbfΓ(t) is a non-decreasing step function. Here, the following lemma shows a linear function that
upper-bounds tbfΓ(t).

Lemma 2 A linear service time bound function ltbfΓ(t) upper-bounds tbfΓ(t) as follows:

ltbfΓ(t) =
Π
Θ
· t+ 2(Π−Θ) ≥ tbfΓ(t).

Proof. We consider two cases depending on the value of εt in tbfΓ(t): (1) εt > 0 and (2) εt = 0.
For the first case, εt > 0 when

t−Θ
⌊ t

Θ

⌋
> 0. (8)

In this case,

tbfΓ(t) = t+ 2(Π−Θ) + (Π−Θ)
⌊ t

Θ

⌋
.

With Eq. (8) and the definition of Θ (0 < Θ ≤ Π), we have

ltbfΓ(t)− tbfΓ(t) =
tΠ
Θ
− (t+ (Π−Θ)

⌊ t
Θ

⌋
)

= (
Π
Θ
− 1)(t−Θ

⌊ t
Θ

⌋
)

> 0.
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Figure 4. An example of a maximum demand bound and its linear upper-bound.

For the second case, εt = 0 when

t−Θ
⌊ t

Θ

⌋
= 0. (9)

In this case, considering t
Θ = b t

Θc, we have

tbfΓ(t) = Π−Θ + Π
⌊ t

Θ

⌋
= Π−Θ + Π

t

Θ
.

Thus, ltbfΓ(t) ≤ tbfΓ(t). 2

Example 3.2 Consider a periodic resource Γ(5, 3). Figure 3 (b) plots its maximum service time tbfΓ(t) and its linear
service time upper bound ltbfΓ(t). For instance, it takes up to 7 time units to receive a resource supply of 3 time units.

4. Schedulability Analysis

For a scheduling model M(W,Γ, A) that characterizes all its three elements, we address the problem of analyzing the
schedulability of M . This section presents sufficient and necessary schedulability conditions for a set of periodic workloads
under the EDF algorithm and a fixed-priority scheduling algorithm with a periodic resource.

4.1. Schedulability Analysis under EDF Scheduling

We define the resource demand of a workload set as the amount of resource allocation that the workload set requests. For
a periodic workload set W , we define a resource demand bound function dbfW (t) of a time interval length t that calculates
the maximum resource demand of W under EDF scheduling during t time units as follows:

dbfW (t) =
∑

Ti∈W

⌊ t
pi

⌋
· ei.

Figure 4 shows an example of the maximum resource demand of a periodic workload set W . As shown in Figure 4,
the resource demand function dbfW (t) is a discrete step function. Here, the following lemma shows a linear function that
upper-bounds dbfW (t).

Lemma 3 A linear demand bound function ldbfW (t) upper-bounds dbfW (t) as follows:

ldbfW (t) = UW · t ≥ dbfW (t),

where UW is the utilization of the workload set W .

Proof. According to the definition of dbfW (t) and UW , we have the followings:

dbfW (t) =
∑

Ti∈W

⌊ t
pi

⌋
· ei

≤
∑

Ti∈W

t

pi
· ei = UW · t = ldbfW (t).

2

With a dedicated resource, a workload set W is schedulable with the EDF scheduling algorithm if and only if the resource
demand during a time interval is no greater than the length of the time interval for all time intervals during a hyperperiod [2],
i.e.,

dbfW (t) ≤ t, for all 0 < t ≤ 2 · LCMW , (10)
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Figure 5. An example of EDF schedulability analysis.

where LCMW is the least common multiplier of the periods of all the workloads in the workload set W .
Now, we consider a sufficient and necessary schedulability condition for a workload set with a partitioned resource. The

traditional schedulability condition of Eq. (10) basically means that for any time interval, the resource demand of a workload
set during the time interval should be no greater than the resource supply of a resource during the same interval. Since
the resource demand of a workload set is independent of a resource, the left-hand side of Eq. (10) is not affected by a
partitioned resource. However, the right-hand side of Eq. (10) that represents the resource supply should change depending
on a partitioned resource. For a periodic partitioned resource Γ, since the resource supply bound function sbfΓ(t) defines
the minimum resource supply of Γ for a time interval length t, the right-hand side of Eq. (10) is replaced by sbfΓ(t).

Theorem 1 (EDF Schedulability Analysis) For a given scheduling model M(W,Γ, EDF ), M is schedulable if and only if
the resource demand of W during a time interval is no greater than the resource supply of Γ during the same time interval
for all time intervals during a hyperperiod, i.e.,

∀0 < t ≤ 2 · LCMW : dbfW (t) ≤ sbfΓ(t). (11)

Proof. To show the necessity, we prove the contrapositive, i.e., if Eq. (11) is false, all workload members of W are not
schedulable by EDF. If the total resource demand of W under EDF scheduling during t exceeds the total resource supply
provided by Γ during t, there is clearly no feasible schedule.

To show the sufficiency, we prove the contrapositive, i.e., if all workload members of W are not schedulable by EDF, then
Eq. (11) is false. Let t2 be the first instant at which a job of some workload member Ti of W that misses its deadline. Let t1
be the latest instant at which the resource supplied to W was idle or was executing a job whose deadline is after t2. By the
definition of t1, there is a job whose deadline is before t2 was released at t1. Without loss of generality, we can assume that
t = t2 − t1. Since Ti misses its deadline at t2, the total demand placed on W in the time interval [t1, t2) is greater than the
total supply provided by Γ in the same time interval length t. 2

Example 4.1 Consider a scheduling model M(W,Γ(5, 3), EDF ), where W = {T1(7, 3), T2(21, 1)}. Figure 5 plots the
minimum resource supply of Γ and the maximum resource demand of W . According to Theorem 1, M is schedulable if and
only if the resource supply of Γ is no less than the resource demand ofW for a time interval of length t, for 0 < t ≤ 2·LCMΓ.
It is shown in Figure 5 that dbfW (t) ≤ sbfΓ(t), for 0 < t ≤ 42. Thus, M is schedulable.

4.2. Schedulability Analysis under Fixed-Priority Scheduling

For a given scheduling model M ′(W,Γ(1, 1), FP ), where Γ(1, 1) represents a dedicated resource and FP is a fixed-
priority scheduling algorithm, M ′ is schedulable if and only if the worst-case response time of each workload in W is no
greater than its relative deadline [7]. The worst-case response time ri of a workload Ti occurs when Ti experiences the
worst-case interference from its higher-priority workloads. Ti is maximally interfered by its higher-priority workloads when
it is released together with all of its higher-priority workloads at the same time, which is called a critical instant. Using the
iterative response time analysis method introduced in [1], ri can be computed as follows:

r
(k)
i = ei +

∑
Tk∈HP (W,Ti)

⌈
r

(k−1)
i

pk

⌉
· ek, where Tk = (pk, ek), (12)

where HP (W,Ti) denotes a subset of W that consists of the higher-priority workloads of Ti. The iteration continues until
r

(k)
i = r

(k−1)
i , where r(0)

i = ei.
Now, we consider a periodic partitioned resource Γ(Π,Θ) such that Π is not necessarily equal to Θ and a scheduling model

M(W,Γ(Π,Θ), FP ). For the schedulability analysis of M , we first consider the worst-case response time ri of a workload
Ti under fixed-priority scheduling with a periodic partitioned resource Γ(Π,Θ). The response time analysis method of Eq.
(12) has been developed under the traditional assumption of a dedicated resource and therefore under the assumption that
the service duration of a resource for a resource supply of t time is t time. The service duration of a partitioned resource
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for a resource supply of t time can be longer than t time. Considering this, we extend the traditional response time analysis
method of Eq. (12) for a periodic partitioned resource. For a workload Ti with a periodic partitioned resource Γ(Π,Θ), its
maximum response time ri can be computed using the following iterative method:

r
(k)
i (Γ) = tbfΓ(I(k)

i ), (13)

where

I
(k)
i = ei +

∑
Tk∈HP (W,Ti)

⌈
r

(k−1)
i (Γ)
pk

⌉
· ek. (14)

Ii captures the worst-case interference to a workload Ti from its higher-priority workloads, and ri(Γ) represents the maximum
service duration of a resource supply of Ii. The iteration continues until r(k)

i = r
(k−1)
i , where r(0)

i = ei.

Theorem 2 (Fixed-Priority Schedulability Analysis) For a given scheduling model M(W,Γ, FP ), where FP is a fixed-
priority scheduling algorithm, M is schedulable if and only if

∀Ti ∈W : ri(Γ) ≤ pi, where Ti = (pi, ei). (15)

Proof. An individual workload is schedulable with Γ if and only if the maximum service duration of Γ for the execution time
of the workload is no greater than the workload’s relative deadline. The maximum response time of a workload Ti occurs
when Ti experiences the worst-case interference from its higher-priority workloads and Γ provides the worst-case resource
supply. For a workload Ti, the worst-case interference from its higher-priority workloads is given by Ii and the maximum
service duration of Γ for Ii is given by tbfΓ(Ii), which is the maximum response time ri of Ti with Γ. Consequently, a
necessary and sufficient condition for Ti to meet its deadline with Γ is ri(Γ) ≤ pi. The entire workload set W is schedulable
with Γ if and only if each of the workloads is schedulable with Γ. This means

∀Ti ∈W : ri(Γ) ≤ pi. (16)

Thus, Eq. (16) is necessary and sufficient for the workload set to be schedulable with Γ. 2

Example 4.2 Consider a scheduling model M(W,Γ(5, 3), RM), where W = {T1(7, 3), T2(21, 1)}. In this example, we
first show how to calculate the maximum response time of T1 in M . According to Eq. (14), I(1)

1 = 3 + d0/3e · 3 = 3.
According to Eq. (13), r(1)

1 (Γ) = tbfΓ(3) = (5 − 3) + 3 · b3/3c + εt = 5, where εt = 0. Subsequently, I(2)
1 = 3 and

r
(2)
1 (Γ) = 5. Since r(2)

1 (Γ) = r
(1)
1 (Γ), the iteration stops here, and r1(Γ) = 5. We then show how to calculate r2(Γ). Initially,

I
(1)
2 = 1 + d1/3e · 3 = 4 and r(1)

2 (Γ) = tbfΓ(4) = (5− 3) + 3 · b4/3c+ εt = 10, where εt = (3− 2) + 4− 3 · b4/3c = 2.
Then, I(2)

2 = 7 and r(2)
2 (Γ) = 15. Subsequently, I(3)

2 = 10 and r(3)
2 (Γ) = 20. Eventually, I(4)

2 = 10, r(4)
2 (Γ) = 20. Since

r
(3)
2 (Γ) = r

(3)
2 (Γ), the iteration stops here, and r2(Γ) = 20. According to Theorem 2, since r1(Γ) ≤ p1 and r2(Γ) ≤ p2, M

is schedulable.

5. Schedulability Bounds

For a scheduling model M that characterizes its two elements but does not characterize the other element, we address
the problems of deriving a schedulability bound for the missing element of M . When M characterizes its workload W
and scheduling algorithm A, we find a periodic capacity bound for its resource Γ that guarantees the schedulability of
M(W,Γ, A). Similarly, when M characterizes its resource Γ and scheduling algorithm A, we find a utilization bound for its
workload W that guarantees the schedulability of M(W,Γ, A). We derive the periodic capacity bounds and the utilization
bounds for the EDF algorithm and the RM algorithm, respectively.

5.1. Periodic Capacity Bounds

We define the periodic capacity CΓ of a periodic resource Γ(Π,Θ) as Θ/Π. In this section, given a set of periodic
workloads W under a scheduling algorithm A, we address the problem of characterizing a set of periodic resources that
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satisfy the timing requirements of W under A. A reasonable approach is to classify such a set of periodic resources by
their periodic capacities subject to their resource periods. For such a classification, we define the periodic capacity bound
PCBW (Π, A) of a resource period Π as a number such that a scheduling model M(W,Γ(Π,Θ), A) is schedulable if

PCBW (Π, A) ≤ Θ
Π
.

With this PCBW (Π, A), we can easily determine whether or not a given periodic resource Γ(Π,Θ) can satisfies the timing
requirements of W under A. Moreover, we can easily abstract the timing requirements of W under A as a single periodic
workload T (p, e) such that p = Π and e = Π ·PCBW (Π, A). In this section, we derive the periodic capacity bounds for the
EDF algorithm and the RM algorithm.

5.1.1 Periodic Capacity Bound for EDF scheduling

Given W under the EDF scheduling algorithm, we first address the problem of finding the optimal (minimum) periodic
capacity bound of a resource period Π. The following theorem derives the optimal bound using the exact schedulability
condition in Theorem 1.

Theorem 3 (Optimal Periodic Capacity Bound for EDF) For a given periodic workload set W under the EDF schedul-
ing algorithm, the optimal (minimum) periodic capacity bound PCB∗W (Π, EDF ) of a period Π is

PCB∗W (Π, EDF ) =
Θ∗

Π
,

where Θ∗ is the smallest possible Θ satisfying

∀0 < t ≤ 2LCMW : dbfW (t) ≤ sbfΓ(t). (17)

A scheduling model M(W,Γ(Π,Θ), EDF ) is schedulable if and only if PCB∗W (Π, EDF ) ≤ CΓ.

Proof. According to Theorem 1, M(W,Γ(Π,Θ), EDF ) is schedulable if and only if Eq. (17) holds with Θ. Since Θ∗ is the
smallest possible Θ satisfying Eq. (17), the schedulability of M is guaranteed if and only if (Θ∗/Π) ≤ CΓ. 2

Due to the max operation in Eq. (17), Theorem 3 inherently presents an algorithm to find the optimal periodic capacity
bound rather than a function to derive it. Here, the following theorem presents a function to derive a periodic capacity bound.

Theorem 4 (Periodic Capacity Bound for EDF) For a given periodic workload set W under the EDF scheduling algo-
rithm, a periodic capacity bound PCBW (Π, EDF ) of a resource period Π is

PCBW (Π, EDF ) =
Θ+

Π
, where

Θ+ = max
0<t≤2LCMW

(√
(t− 2Π)2 + 8ΠdbfW (t)− (t− 2Π)

4

)
. (18)

Proof. Since lsbfΓ(t) ≤ sbfΓ(t), we can have the following from Theorem 1:

dbfW (t) ≤ lsbfΓ(t) =
Θ
Π

(t− 2Π + 2Θ) ≤ sbfΓ(t). (19)

From Eq. (19), we have

Θ ≥
√

(t− 2Π)2 + 8ΠdbfW (t)− (t− 2Π)
4

. (20)

Hence, when we find Θ+ such that Θ+ is the smallest possible Θ satisfying Eq. (20), we can guarantee thatM(W,Γ(Π,Θ), EDF )
is schedulable if (Θ+/Π) ≤ CΓ. 2
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Example 5.1 For a given W = {T1(7, 3), T2(12, 3)} under the EDF algorithm, this example considers the problem of de-
riving a periodic capacity bound. We systematically find the optimal periodic capacity bound of resource period 5 according
to the algorithm in Theorem 3, as 0.75 with Θ∗ = 3.75. That is, we can model W under the EDF algorithm as a single
period workload T (5, 3.75) preserving its timing requirement. Hence, for a scheduling model M(W,Γ, EDF ) where Γ
does not yet characterize its resource, we define Γ as Γ(5, 3.75) and make M schedulable. According to Theorem 4, we can
numerically find a periodic capacity bound of resource period 5 as 0.77, with Θ+ = 3.85. We can also model W under EDF
as T (5, 3.85).

5.1.2 Periodic Capacity Bound for RM Algorithm

In this section, we address the issues of deriving periodic capacity bounds for the RM scheduling algorithm. Given W under
the RM scheduling algorithm, the following theorem shows how to find the optimal (minimum) periodic capacity bound of a
resource period Π using the exact schedulability condition in Theorem 2.

Theorem 5 (Optimal Periodic Capacity Bound for RM) For a given periodic workload set W under the RM scheduling
algorithm, the optimal (minimum) periodic capacity bound PCB∗W (Π, RM) of a resource period Π for a periodic partition
resource Γ is

PCB∗W (Π, RM) =
Θ∗

Π
,

where Θ∗ is the smallest possible Θ satisfying the following necessary and sufficient schedulability condition in Theorem 2:

∀Ti ∈W : ri(Γ) ≤ pi, where Ti = (pi, ei). (21)

A scheduling model M(W,Γ(Π,Θ), RM) is schedulable if and only if PCB∗W (Π, RM) ≤ CΓ.

Proof. According to Theorem 2, M(W,Γ(Π,Θ), RM) is schedulable if and only if Eq. (21) is true with Θ. Since Θ∗ is the
smallest possible Θ satisfying Eq. (21), the schedulability of M is guaranteed if and only if (Θ∗/Π) ≤ CΓ. 2

The supply bound function tbfΓ(t) that is used to calculate the maximum response time r(k)
i (Γ) has a discrete operation

as shown in Eq. (7). Like the optimal periodic capacity bound for the EDF algorithm, due to this discrete operation, Theorem
5 inherently presents an algorithm to find the optimal periodic capacity bound rather than a function to derive it. Here, we
present an integrative method to derive a periodic capacity bound using ltbfΓ(t) that linearly upper-bounds tbfΓ(t).

Recall that the maximum response time r(k)
i (Γ) is computed with the following iterative method:

r
(k)
i (Γ) = tbfΓ(I(k)

i ), (22)

where

I
(k)
i = ei +

∑
Tk∈HP (W,Ti)

⌈
r

(k−1)
i (Γ)
pk

⌉
· ek. (23)

Let r̂(k)
i (Γ) denote the upper-bound of the maximum response time that is computed as follows:

r̂
(k)
i (Γ) = ltbfΓ(I(k)

i ), (24)

Lemma 4 A scheduling model M(W,Γ, RM) is schedulable if ∀Ti ∈W : r̂i(Γ) ≤ pi.

Proof. Since tbfΓ(t) ≤ ltbfΓ(t), clearly, r(k)
i (Γ) ≤ r̂

(k)
i (Γ). Then, it is obvious that for all Ti ∈ W , if r̂i(Γ) ≤ pi, then

ri(Γ) ≤ pi. 2

Theorem 6 (Periodic Capacity Bound for RM) For a given periodic workload setW under theRM scheduling algorithm,
a periodic capacity bound PCBW (Π, RM) of a period Π for a periodic partition resource Γ is

PCBW (Π, RM) =
Θ+

Π
, where

10



Figure 6. An example of linear upper-bound of demand and linear lower-bound of supply.

Θ+ = max
∀Ti∈W

(
−(pi − 2Π) +

√
(pi − 2Π)2 + 8ΠIi
4

)
, (25)

where

Ii = ei +
∑

Tk∈HP (W,Ti)

⌈
pi

pk

⌉
· ek. (26)

Proof. According to Theorem 2, M(W,Γ, RM) is schedulable even though for all Ti ∈ W , ri = pi. Ii captures the worst-
case interference to a workload Ti from its higher-priority workloads. According to Lemma 4, then M(W,Γ(Π,Θ), RM) is
schedulable, if ltbfΓ(Ii) ≤ pi for all Ti ∈W , that is,

∀Ti ∈W : ltbfΓ(Ii) =
Π
Θ
· Ii + 2(Π−Θ) ≤ pi, (27)

Θ+ captures the smallest possible Θ satisfying Eq. (27). Thus, it is guaranteed that M(W,Γ(Π,Θ), RM) is schedulable if
(Θ+/Π) ≤ CΓ. 2

Example 5.2 Given W = {T1(7, 3), T2(12, 3)} under the RM scheduling algorithm, this example shows how to derive
periodic capacity bounds of resource period 5. According to Theorem 5, we can systematically find the optimal periodic
capacity bound PCB∗W (5, RM) as 0.85, with Θ∗ = 4.25. Thus, we can model W under RM as a single periodic workload
T (5, 4.25). According to Theorem 6, we can also numerically find a periodic capacity bound PCBW (5, RM). According
to Eq. (26), I1 = 3 and I2 = 9. According to Eq. (25), Θ+ = 4.27 since Eq. (27) is true for T1 with Θ = 3.59 and true for
T2 with Θ = 4.27. Thus, PCBW (5, RM) = 0.85 with Θ+ = 4.27, and we can also model W under RM as T (5, 4.27).

5.2. Utilization Bounds

Given a periodic resource Γ, we define the utilization bound UBΓ(A) of a scheduling algorithm A as a number such that
a scheduling model M(W,Γ, A) is schedulable if ∑

Ti∈W

ei

pi
≤ UBΓ(A).

These utilization bounds are useful in performing an admission test of a periodic workload set W over a periodic resource
Γ with a scheduling algorithm A. In this section, we derive the utilization bounds for the EDF algorithm and for the RM
algorithm.

5.2.1 Utilization Bound for EDF Algorithm

When a scheduling model M(W,Γ(Π,Θ), EDF ) is schedulable, it is clear that the utilization of W is no greater than the
periodic capacity of Γ. That is,

UW ≤ CΓ =
Θ
Π
. (28)

Recall the definitions of two linear functions, ldbfW (t) and lsbfΓ(t), as follows:

ldbfW (t) = UW · t and lsbfΓ(t) =
Θ
Π

(t− 2 · (Π−Θ)).

When M(W,Γ(Π,Θ), EDF ) is schedulable, we can easily observe that the slope of ldbfW (t) is no greater than the slope
of lsbfΓ(t), since UW ≤ Θ

Π . As shown in Figure 6, it is obvious that if ldbfW (t∗) ≤ lsbfΓ(t∗), then ldbfW (t) ≤ lsbfΓ(t)
for all t > t∗. Let p∗ denotes the smallest period in a periodic workload set W . The following lemma shows that if
ldbfW (p∗) ≤ lsbfΓ(p∗), then M(W,Γ, EDF ) is schedulable.
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Lemma 5 When lsbfΓ(p∗) ≥ ldbfW (p∗), a scheduling model M(W,Γ, EDF ) is schedulable, where p∗ is the smallest
period in W .

Proof. The possible integer values of a time interval length t fall into two ranges: (1) 0 < t < p∗ and (2) p∗ ≤ t.
For the first case where 0 < t < p∗, from the definition of dbfW (t), we can see that

∀0 < t < p∗ : dbfW (t) = 0.

Then, it is obvious that
∀0 < t < p∗ : dbfW (t) ≤ sbfW (t). (29)

For the second case where p∗ ≤ t, from the observation that

∀t ≥ p∗ :
(
ldbfW (t∗) ≤ lsbfΓ(t∗)

)
→
(
ldbfW (t) ≤ lsbfΓ(t)

)
,

we can see that
∀t ≥ p∗ : dbfW (t) ≤ ldbfW (t) ≤ lsbfΓ(t) ≤ sbfΓ(t) (30)

According to Theorem 1, Eq. (29) and Eq. (30) show that when lsbfΓ(p∗) ≥ ldbfW (p∗), M(W,Γ, EDF ) is schedula-
ble. 2

Based on Lemma 5, the following theorem presents a utilization bound for the EDF algorithm over a periodic resource.

Theorem 7 (Utilization Bound for EDF Algorithm) Given a periodic resource Γ(Π,Θ), a utilization bound UBΓ(EDF )
of the EDF algorithm for a periodic workload set W is

UBΓ(EDF ) =
Θ
Π

(
1− 2(Π−Θ)

p∗

)
, (31)

where p∗ is the smallest period in the workload set W .

Proof. Lemma 5 says that if ldbfW (p∗) ≤ lsbfΓ(p∗), M(W,Γ(Π,Θ), EDF ) is schedulable. When ldbfW (p∗) ≤
lsbfΓ(p∗), we can get

ldbfW (p∗) = p∗ · UW ≤ lsbfΓ(p∗) =
Θ
Π
· (p∗ − 2(Π−Θ)).

With the above equation, we can get

UW ≤
lsbfΓ(t)
p∗

=
Θ
Π

(p∗ − 2(Π−Θ)
p∗

)
=

Θ
Π

(
1− 2(Π−Θ)

p∗

)
.

2

Example 5.3 Given a periodic resource Γ(5, 3) under the EDF scheduling, this example shows how to derive a utiliza-
tion bound. Let p∗ denotes the shortest period of a periodic workload set W . According to Theorem 7, when p∗ = 10,
UBΓ(EDF ) = (3/5) · (1− (2(5− 3)/10) = 0.36. When p∗ = 100, UBΓ(EDF ) = (3/5) · (1− (2(5− 3)/100) = 0.58.

5.2.2 Utilization Bound for RM Algorithm

We note that the RM utilization bound in this section (Theorems 8 and 9) contains an error, and we leave out the proofs of the
theorem. We recognized this error while working on extending this technical report to a journal paper in 2004 3. We refer to
our ACM TECS 2008 paper [13] for a new RM utilization bound that resolves the error. - Added in Jan. 2010.

3This error was rediscovered by van Renssen et. al, ”On Utilization Bounds for a Periodic Resource under Rate Monotonic Scheduling”, ECRTS 2009
WIP [16]
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In this subsection, we derive a utilization bound for the RM scheduling algorithm. Given a periodic resource Γ, we derive
a utilization bound of the RM algorithm. through the following steps: (1) we first derive UBΓ(RM) for a set of two periodic
workloads, (2) we extend UBΓ(RM) for a set of n periodic workloads yet with a period restriction that the ratio between
any two task period is less than 2, and (3) we then remove the period restriction.

Theorem 8 For a periodic resource Γ(Π,Θ), its utilization bound UBΓ(RM) of the RM scheduling algorithm for a work-
load set of two periodic workloads is

UBΓ(RM) =
Θ
Π

(
2(
√

2− 1)−
√

2(Π−Θ)
p∗

)
, (32)

where p∗ is the shortest period of W .

We now derive the corresponding bound for an arbitrary number of tasks. At this moment, let us restrict our discussion to
the case in which the ratio between any two task period is less than 2.

Theorem 9 (Utilization Bound for RM Algorithm) For a periodic resource Γ(Π,Θ) and a set of m periodic workloads
under the restriction that the ratio between any two task period is less than 2, a utilization bound UBΓ(RM) is

UBΓ(RM) =
Θ
Π

(
m( m
√

2− 1)−
m
√

2(Π−Θ)
p∗

)
, (33)

where p∗ is the shortest period of W .

6. Compositional Real-Time Guarantees

A hierarchical scheduling framework is said to support compositional real-time guarantee if each parent scheduling model
is computed from its child scheduling models such that the real-time guarantee of the parent scheduling model is satisfied, if
and only if, the real-time guarantees of its child scheduling models are satisfied in the framework. In this section, we address
the problem of developing a parent scheduling model from its child scheduling model in order to construct a hierarchical
scheduling framework that supports compositional real-time guarantees. The following theorem introduces a composition
method that derives a parent scheduling model from its child scheduling models and shows how to construct a hierarchical
scheduling framework supporting compositional real-time guarantees.

Definition 6.1 (Composition Method) Given multiple scheduling modelsM1, · · · ,Mn, we derive a scheduling modelMP (WP ,ΓP , AP )
from M1, · · · ,Mn as follows:

• we assume that AP and ΠP are given;

• we derive WP by simply mapping the resource model of a child scheduling model Γi(Πi,Θi) to its periodic task
Ti(pi, ei) such that WP = {T1(Π1,Θ1), · · · , Tn(Πn,Θn)};

• we first derive PCB∗WP
(ΠP , AP ) according to Theorem 3 or Theorem 5 depending on AP . If PCB∗WP

(ΠP , AP ) is
derived, we then compute ΘP such that ΘP = ΠP · PCB∗WP

(ΠP , AP ).

Theorem 10 (Compositional Real-Time Guarantees) Given multiple scheduling modelsM1, · · · ,Mn that are individually
schedulable, we derive a scheduling model MP (WP ,ΓP , AP ) from M1, · · · ,Mn according to the composition method in
Definition 6.1. Then, we construct a hierarchical scheduling framwork H such that MP is a parent scheduling model of
M1, · · · ,Mn. H supports the compositional real-time guarantees such that MP is schedulable, if and only if, M1, · · · ,Mn

are schedulable in the framework.

Proof. To show its sufficiency, we consider M1, · · · ,Mn are schedulable together in the framework. That is, the combined
timing requirements of M1, · · · ,Mn can be satisfied. According to the composition method, for all 1 ≤ i ≤ n, Ti in WP has
the same timing requirements as Γi in Mi has. Thus, the combined timing requirements of T1, · · · , Tn can be also satisfied.
Then, PCB∗WP

(ΠP , AP ) is derived as Θ∗P /ΠP such that 0 < Θ∗P ≤ ΠP , according to Theorem 3 and Theorem 5. Since the
composition method derives ΘP as Θ∗P , MP is derived to be schedulable.
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To show its necessity, we considerMP is schedulable. Then, for all 1 ≤ i ≤ n, Ti and its corresponding Γi are guaranteed
to receive ei time units every pi time units. That is, Mi receives from MP a resource allocation of Θi time units every Πi

time units. Thus, M1, · · · ,Mn are schedulable together in the framework. 2

Example 6.1 Consider two schedulable scheduling models M1(W1,Γ1(7, 3), A1) and M2(W2,Γ2(12, 3), A2). This exam-
ple shows how to derive a parent scheduling model MP from M1 and M2 preserving the real-time guarantees of M1 and
M2. For MP (WP ,ΓP (ΠP ,ΘP ), AP ), we assume that AP is given as EDF and ΠP is given as 5. Then, we derive WP and
ΘP according to the composition method in Definition 6.1. We construct WP as WP = {T1(7, 3), T2(12, 3)} and compute
PCB∗WP

(5, EDF ) to derive ΘP . As shown in Example 5.1, PCB∗WP
(5, EDF ) is 0.75 according to Theorem 3. Then, ΘP

is set as 5 ·0.75 = 3.75. Now, we create MP as MP ({T1(7, 3), T2(12, 3)},Γ(5, 3.75), EDF ). According to Theorem 3, MP

is schedulable.

7. Conclusion

We proposed a resource model that can describe a periodic behavior of a partitioned resource and provided the exact
schedulability condition for a scheduling model with our proposed model. For a hierarchical scheduling framework, we
introduced a scheduling interface model that bridges two independently developed scheduling models by modeling the tem-
poral guarantees of a parent scheduling model as a periodic resource model and abstracting the temporal requirement of a
child scheduling model as a periodic workload model. With this scheduling interface model, a scheduling model can use
any scheduling algorithm and its schedulability is independently analyzed without any interaction with another scheduling
model. Furthermore, we provided a composition method to derive a parent scheduling model from its child scheduling model
in a compositional manner such that if the parent scheduling model is schedulable, if and only, its child scheduling models
are schedulable.

In this paper, we derive a parent scheduling model from its child scheduling models. To preserve the timing requirements
of the child scheduling models, the parent scheduling model may demand more timing requirements than a simple sum of the
timing requirements of all individual scheduling models. We are evaluating the overhead to support the compositional timing
guarantees. We are also studying the properties that our compositional framework has, i.e., an associativity. In this paper,
we consider only a periodic task workload model for characterizing hard real-time applications. Our future work is to extend
our resource model and its scheduling theory to different task workload models for soft real-time applications such as the
(m, k)-firm deadline model [6] and the weakly hard task model [3]. In this paper, we assume that each task is independent.
However, tasks may interact with each other through communications and synchronizations. The study of this issue remains
as a topic of future research.
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