302 research outputs found

    Sequential Synthesis of Distributed Controllers for Cascade Interconnected Systems

    Full text link
    We consider the problem of designing distributed controllers to ensure passivity of a large-scale interconnection of linear subsystems connected in a cascade topology. The control design process needs to be carried out at the subsystem-level with no direct knowledge of the dynamics of other subsystems in the interconnection. We present a distributed approach to solve this problem, where subsystem-level controllers are locally designed in a sequence starting at one end of the cascade using only the dynamics of the particular subsystem, coupling with the immediately preceding subsystem and limited information from the preceding subsystem in the cascade to ensure passivity of the interconnected system up to that point. We demonstrate that this design framework also allows for new subsystems to be compositionally added to the interconnection without requiring redesign of the pre-existing controllers.Comment: Accepted to appear in the proceedings of the American Control Conference (ACC) 201

    Compositional Synthesis via a Convex Parameterization of Assume-Guarantee Contracts

    Full text link
    We develop an assume-guarantee framework for control of large scale linear (time-varying) systems from finite-time reach and avoid or infinite-time invariance specifications. The contracts describe the admissible set of states and controls for individual subsystems. A set of contracts compose correctly if mutual assumptions and guarantees match in a way that we formalize. We propose a rich parameterization of contracts such that the set of parameters that compose correctly is convex. Moreover, we design a potential function of parameters that describes the distance of contracts from a correct composition. Thus, the verification and synthesis for the aggregate system are broken to solving small convex programs for individual subsystems, where correctness is ultimately achieved in a compositional way. Illustrative examples demonstrate the scalability of our method

    Compositional Synthesis for Linear Systems via Convex Optimization of Assume-Guarantee Contracts

    Full text link
    We take a divide and conquer approach to design controllers for reachability problems given large-scale linear systems with polyhedral constraints on states, controls, and disturbances. Such systems are made of small subsystems with coupled dynamics. We treat the couplings as additional disturbances and use assume-guarantee (AG) contracts to characterize these disturbance sets. For each subsystem, we design and implement a robust controller locally, subject to its own constraints and contracts. The main contribution of this paper is a method to derive the contracts via a novel parameterization and a corresponding potential function that characterizes the distance to the correct composition of controllers and contracts, where all contracts are held. We show that the potential function is convex in the contract parameters. This enables the subsystems to negotiate the contracts with the gradient information from the dual of their local synthesis optimization problems in a distributed way, facilitating compositional control synthesis that scales to large systems. We present numerical examples, including a scalability study on a system with tens of thousands of dimensions, and a case study on applying our method to a distributed Model Predictive Control (MPC) problem in a power system

    Formal methods for resilient control

    Get PDF
    Many systems operate in uncertain, possibly adversarial environments, and their successful operation is contingent upon satisfying specific requirements, optimal performance, and ability to recover from unexpected situations. Examples are prevalent in many engineering disciplines such as transportation, robotics, energy, and biological systems. This thesis studies designing correct, resilient, and optimal controllers for discrete-time complex systems from elaborate, possibly vague, specifications. The first part of the contributions of this thesis is a framework for optimal control of non-deterministic hybrid systems from specifications described by signal temporal logic (STL), which can express a broad spectrum of interesting properties. The method is optimization-based and has several advantages over the existing techniques. When satisfying the specification is impossible, the degree of violation - characterized by STL quantitative semantics - is minimized. The computational limitations are discussed. The focus of second part is on specific types of systems and specifications for which controllers are synthesized efficiently. A class of monotone systems is introduced for which formal synthesis is scalable and almost complete. It is shown that hybrid macroscopic traffic models fall into this class. Novel techniques in modular verification and synthesis are employed for distributed optimal control, and their usefulness is shown for large-scale traffic management. Apart from monotone systems, a method is introduced for robust constrained control of networked linear systems with communication constraints. Case studies on longitudinal control of vehicular platoons are presented. The third part is about learning-based control with formal guarantees. Two approaches are studied. First, a formal perspective on adaptive control is provided in which the model is represented by a parametric transition system, and the specification is captured by an automaton. A correct-by-construction framework is developed such that the controller infers the actual parameters and plans accordingly for all possible future transitions and inferences. The second approach is based on hybrid model identification using input-output data. By assuming some limited knowledge of the range of system behaviors, theoretical performance guarantees are provided on implementing the controller designed for the identified model on the original unknown system

    Correct-By-Construction Control Synthesis for Systems with Disturbance and Uncertainty

    Full text link
    This dissertation focuses on correct-by-construction control synthesis for Cyber-Physical Systems (CPS) under model uncertainty and disturbance. CPSs are systems that interact with the physical world and perform complicated dynamic tasks where safety is often the overriding factor. Correct-by-construction control synthesis is a concept that provides formal performance guarantees to closed-loop systems by rigorous mathematic reasoning. Since CPSs interact with the environment, disturbance and modeling uncertainty are critical to the success of the control synthesis. Disturbance and uncertainty may come from a variety of sources, such as exogenous disturbance, the disturbance caused by co-existing controllers and modeling uncertainty. To better accommodate the different types of disturbance and uncertainty, the verification and control synthesis methods must be chosen accordingly. Four approaches are included in this dissertation. First, to deal with exogenous disturbance, a polar algorithm is developed to compute an avoidable set for obstacle avoidance. Second, a supervised learning based method is proposed to design a good student controller that has safety built-in and rarely triggers the intervention of the supervisory controller, thus targeting the design of the student controller. Third, to deal with the disturbance caused by co-existing controllers, a Lyapunov verification method is proposed to formally verify the safety of coexisting controllers while respecting the confidentiality requirement. Finally, a data-driven approach is proposed to deal with model uncertainty. A minimal robust control invariant set is computed for an uncertain dynamic system without a given model by first identifying the set of admissible models and then simultaneously computing the invariant set while selecting the optimal model. The proposed methods are applicable to many real-world applications and reflect the notion of using the structure of the system to achieve performance guarantees without being overly conservative.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145933/1/chenyx_1.pd
    • …
    corecore