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ABSTRACT

Many systems operate in uncertain, possibly adversarial environments, and their

successful operation is contingent upon satisfying specific requirements, optimal per-

formance, and ability to recover from unexpected situations. Examples are prevalent

in many engineering disciplines such as transportation, robotics, energy, and biolog-

ical systems. This thesis studies designing correct, resilient, and optimal controllers

for discrete-time complex systems from elaborate, possibly vague, specifications.

The first part of the contributions of this thesis is a framework for optimal control

of non-deterministic hybrid systems from specifications described by signal tempo-

ral logic (STL), which can express a broad spectrum of interesting properties. The

method is optimization-based and has several advantages over the existing techniques.

When satisfying the specification is impossible, the degree of violation - characterized

by STL quantitative semantics - is minimized. The computational limitations are

discussed.

The focus of second part is on specific types of systems and specifications for

which controllers are synthesized efficiently. A class of monotone systems is intro-

vi



duced for which formal synthesis is scalable and almost complete. It is shown that

hybrid macroscopic traffic models fall into this class. Novel techniques in modular

verification and synthesis are employed for distributed optimal control, and their use-

fulness is shown for large-scale traffic management. Apart from monotone systems,

a method is introduced for robust constrained control of networked linear systems

with communication constraints. Case studies on longitudinal control of vehicular

platoons are presented.

The third part is about learning-based control with formal guarantees. Two ap-

proaches are studied. First, a formal perspective on adaptive control is provided in

which the model is represented by a parametric transition system, and the specifica-

tion is captured by an automaton. A correct-by-construction framework is developed

such that the controller infers the actual parameters and plans accordingly for all

possible future transitions and inferences. The second approach is based on hybrid

model identification using input-output data. By assuming some limited knowledge

of the range of system behaviors, theoretical performance guarantees are provided on

implementing the controller designed for the identified model on the original unknown

system.
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1

Chapter 1

Introduction

1.1 Motivation

The goal of control theory is to develop algorithms to operate dynamical systems

in desired manners. Most controllers are based on mathematical models, which are

often not accurate since many details are ignored and left as uncertainties. In a good

model, uncertainties are bounded within limited ranges. A central idea in control

theory is to use persistent feedback to handle the mismatches between the model and

the actual system, which are typically small since models predict the behaviors of

actual systems reasonably well.

The theoretical foundations of feedback mechanisms and stabilization date back

to 19th century. Since then, a lot of success have been achieved in automatic control,

such as remarkable milestones in aerospace industry. Many paradigms in control the-

ory - such as optimal control, robust control, and adaptive control - became mature

by the late 20th century. Despite remarkable achievements, a new realm of challenges

emerged in the late 20th century and has rapidly grown in the third millennium.

The difficulty is dealing with systems that are increasingly complex, large in scale,

and more interestingly - from my point of view - specified with objectives that are

more complex than stability. The main reason that these challenges have emerged

lately are recent technological advances in computation, sensing, and communica-

tion, which collectively have made automation possible in many complex systems
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that were mainly operated by humans before. Self-driving cars, for example, are now

a possibility because of significant improvements in artificial intelligence and percep-

tion techniques. The objectives of self-driving cars are way more complicated than

stability: they have to safely navigate through roads while avoiding obstacles and

other vehicles (possibly driven by careless humans), respect traffic rules, and mini-

mize energy consumption and travel times. On a broader scale, traffic management

is a serious issue in many cities, where the infrastructure has to be utilized in the

best possible way, but also a lot of complicated constraints exists because of traffic

signals, pedestrians, and safety considerations. As many systems operate in uncertain

environments, resilience is a necessity in the sense that the system has to achieve suc-

cessful performance for all possible phenomena modeled as uncertainties, which are

often adversarial. For instance, it is crucial to guarantee that no rear-end collisions

occur in platoons of autonomous cars no matter how disturbances, like engine fluc-

tuations and wind gusts, hit the system. It is not as relevant to ensure optimized H2

or H∞ performance in the Hardy space of system’s frequency-domain representation,

a well-studied problem in classical robust control.

The mentioned developments require rigorous mathematical techniques to be em-

ployed. For this reason, we have observed a growing trend of using formal methods

[Baier and Katoen, 2008] in control theory. Formal methods were originally devel-

oped in the computer science community to reason about executions of software and

digital circuits. These systems are often simple, but the specifications are complex,

usually described by a version of temporal logics [Emerson, 1990], which is a natural

framework to specify a broad range of behaviors such as safety, liveness, sequentiality,

and their elaborate combinations. One strong argument for using formal methods in

control engineering is providing formal certificates on system performances, which is

often characterized by constraints. In fact, without using formal methods, one may
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have to test a system with infinite states (e.g., any system with continuous state

space) infinitely many times to guarantee that a certain requirement is verified. Ide-

ally, formal approaches in control theory are aimed to find tools and algorithms for

controller design such that the following properties hold:

• Correctness: Given a system model with bounded uncertainties, an initial

condition, and a specification over its trajectories, the specification is satisfied

by all possible trajectories allowed within the uncertainty bounds.

• Completeness: No conservatism is introduced in the algorithm for controller

design. If a controller exists, the algorithms should be able to find it. Also,

the set of all admissible initial conditions from which correct controllers exist is

relevant and has to be computed.

• Optimality: If more than one controller ensuring correctness exist (which

is often the case), find the optimal one subject to a given cost criterion. A

natural cost function is the degree of specification satisfaction - a notion that

is formalized in Section 2.1.3. In particular, when correctness is not possible,

finding a controller with the least amount of specification violation is an optimal

control problem of interest.

1.2 The Objectives of This Dissertation

Achieving all the objectives listed above is formidable even for small systems and

simple specifications. It is necessary to trade-off some of the objectives in the fa-

vor of others. A brief overview of the existing techniques on formal methods and

control theory is provided in Section 1.3. In this thesis, no compromise is given on

correctness. The controllers have to be correct-by-design - no heuristics is considered.

If the developed algorithms are unable to find a controller guaranteeing correctness,
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the least violating ones are designed, with a certificate on the maximum amount of

violation possible. The violation is characterized by introducing a quantitative notion

of distance to satisfaction. Completeness is very important, but may be computa-

tionally intractable to achieve. The same rule applies to optimality. Suboptimal but

computationally simple solutions are preferred.

Despite important advances in addressing the objectives mentioned earlier, the

current techniques suffer from a number of serious drawbacks. The contributions of

this thesis are formal methods solutions to the following problems:

• Robust optimal control: the literature on connection between formal meth-

ods and robust optimal control is slim. The existing methods are severely

conservative, naive, and not resilient enough, especially for infinite-time speci-

fications. The first part of this thesis is devoted to developing a framework for

control of non-deterministic hybrid systems from temporal logic specifications.

• Large-scale control: a severe limitation in formal synthesis - and an argument

often made against using formal methods in control theory - is scalability. Most

existing techniques are not applicable to systems beyond, roughly, 5-6 dimen-

sions. However, by taking advantage of the specific structure of the system and

its specification, scalable methods are sought. Moreover, formal synthesis of

distributed controllers - where a specific information flow structure is imposed

on a network of controlled subsystems - is an open problem. The second part of

this thesis concerns large-scale resilient synthesis for systems and specifications

with special structures, with a strong emphasis on transportation applications.

• Learning-based Control: in many systems and specification, an accurate

(simple) model is not available in practice. Thus, designing controllers with

formal performance guarantees is challenging. A formal perspective on com-
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bining learning-based control and formal methods is lacking. In particular,

in many safety-control systems, the specification should not be violated even

during learning. Thus, approaches based on reinforcement learning are inappro-

priate. The third, and the final part of this thesis, provides a formal perspective

on adaptive control and data-driven synthesis.

1.3 Related Work

Control technqiues in the spirit of formal methods date back to 1970s, when finite-time

and infinite-time safety and reachability control of systems with set-valued distur-

bances were studied [Bertsekas and Rhodes, 1971,Bertsekas, 1972]. Reachability and

safety are specifically important in safety-critical systems [Tomlin et al., 1998,Mitchell

et al., 2005]. The robotics community, in particular, was attracted by the formalism

offered in formal methods for specifying robotics missions, and correct-by-construction

methods for motion planning [Bacchus and Kabanza, 2000,Fainekos et al., 2005].

Controlling systems described by differential or difference equations from temporal

logic specifications caught the attention of control theorists in 2000s. In particular,

significant attention was devoted to systems that involve both continuous and discrete

behaviors (hybrid systems), where a lot of traditional control techniques fail. Followed

by remarkable results on timed and hybrid automata in [Alur and Dill, 1994, Hen-

zinger, 2000], and finite-state abstractions [Alur et al., 2000], automata-based control

synthesis became a popular research direction. The idea was to represent continu-

ous control systems by finite-state transition systems, where the connection between

the two was formally established using simulation or bisimulation relations [Milner,

1989]. It was shown that all the possible executions of an infinite-state system can be

contained in those of a finite system. In the case of bisimulation, these are equivalent,

introducing no conservativeness. The specification is often captured by a finite-state
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automaton with a specific accepting condition. The synthesis problem, which yields

the control strategy, becomes solving a Buchi or Rabin game [Grädel et al., 2002] on

the product of the transition system and the specification automaton.

Control synthesis for linear and piecewise affine systems from linear temporal logic

(LTL) specifications was studied in [Tabuada and Pappas, 2006,Kloetzer and Belta,

2008, Yordanov et al., 2012, Gol et al., 2014]. Approximate finite bisimulation quo-

tients for nonlinear systems were investigated in [Pola et al., 2008,Pola and Tabuada,

2009, Zamani et al., 2012]. The main limitations of finite abstraction are the large

computational burden of discretization in high dimensions and conservativeness when

exact bisimulations are impossible or difficult to construct. More recently, the au-

thors in [Coogan and Arcak, 2015] provided an efficient method to compute finite

abstractions for mixed-monotone systems (a more general class than monotone sys-

tems). The authors in [Kim et al., 2017b] exploited monotonicity for compositional

LTL control. While the approaches in [Coogan and Arcak, 2015,Kim et al., 2017b] are

efficient for the computation of transitions, they still require state-space discretiza-

tion, which is a severe limitation in high dimensions. Moreover, they are conservative

since the finite abstractions are often not bisimilar with the original system.

Automata-based approaches provide Boolean answers to the existence of con-

trollers. If an automata-based approach fails to find a control policy, there is no

direct way to find a controller that is minimally violating. While some works have

introduced violation metrics to automata-based synthesis [Tumova et al., 2013,Lahi-

janian et al., 2015], they are specifically tailored to applications in mobile robotics.

Probabilistic methods, which are outside of the scope of this thesis, are an alternative

way to introduce resilience into formal synthesis [Abate et al., 2008,Lahijanian et al.,

2010, Fu and Topcu, 2015, Svoreňová et al., 2015, Sadigh and Kapoor, 2015, Mehr

et al., 2017]. However, probabilistic characterization of the system dynamics has to
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be given in prior. Furthermore, specific difficulties arise in finite abstraction of con-

tinuous probabilistic systems (e.g., see [Abate et al., 2011]) and probabilistic control

from infinite-time objectives [Chatterjee et al., 2016,Ehlers et al., 2016].

Receding-horizon implementations were used to combine optimal control and

automata-based synthesis [Wongpiromsarn et al., 2010, Gol and Belta, 2014]. As

an alternative approach, LTL optimization-based control of mixed-logical dynamical

(MLD) systems [Bemporad and Morari, 1999] using mixed-integer programs was in-

troduced in [Karaman et al., 2008, Wolff et al., 2014], and was recently extended to

model predictive control (MPC) from signal temporal logic (STL) specifications in

[Raman et al., 2014, Raman et al., 2015]. However, these approaches are unable to

guarantee infinite-time properties like safety, and the results are fragile in the presence

of disturbances. In order to recover from infeasibility in MPC optimization problems,

specification modification [Ghosh et al., 2016] was proposed. However, without a

formal perspective on resilience, it is not possible to provide a certificate on how

bad a controller can perform. Moreover, the current MPC approaches are based on

minimax optimization problems which are open-loop and severely conservative.

In some applications, the structural properties of the system and the specifica-

tion can be exploited to consider alternative approaches to formal control synthesis.

A class of these systems are monotone systems, in which the evolution of the state

exhibits a type of order preserving law. Monotonicity is common in models of trans-

portation, biological, and economic systems [May, 2007, Como et al., 2014, Coogan

et al., 2016a, Kim et al., 2016]. Such systems are also positive in the sense that

the state components are always non-negative. Control of positive systems have

been widely studied in the literature [Haddad et al., 2010, Rantzer, 2011, De Leen-

heer and Aeyels, 2001]. Positive linear systems are always monotone [Rantzer, 2011].

Monotone dynamical systems have been extensively investigated in the mathematics
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literature [Hirsch, 1985, Hirsch, Morris W, Smith, 2005, Smith, 2008]. Angeli and

Sontag [Angeli and Sontag, 2003] extended the notion of monotonicity to determinis-

tic continuous-time control systems and provided results on interconnections of these

systems. However, they assumed monotonicity with respect to both state and con-

trols, which is very restrictive. Safety control of cooperative systems was investigated

in [Hafner and Del Vecchio, 2011,Ghaemi and Del Vecchio, 2014,Meyer et al., 2016].

However, these work, like [Angeli and Sontag, 2003], assumed monotonicity with re-

spect to the control inputs as well. Computational benefits gained from monotonicity

for reachability analysis of hybrid systems were highlighted in [Ramdani et al., 2010].

An interesting large-scale control problem is traffic management. Due to compu-

tational complexity, traditional optimal control techniques such as Hamilton-Jacobi-

Bellman (HJB) equations are not suitable for traffic control. Traffic-responsive strate-

gies employ approximate dynamic programming methods such as model predictive

control (MPC) for real-time optimization. Notable implementations are SCOOT

[Hunt et al., 1981], OPAC [Gartner, 1983] and UTOPIA [Mauro and Di Taranto,

1990]. Other approaches include infinitesimal perturbation analysis [Geng and Cas-

sandras, 2015, Fleck et al., 2016], stable MPC for freeway ramp metering [Koehler

et al., 2016], control based on convex relaxations [Lovisari et al., 2014, Como et al.,

2016], and disturbance localization [Sivaranjani et al., 2015,Sivaranjani et al., 2017].

However, real-time optimization is not possible beyond small-scale systems. Totally

decentralized methods optimize the controls of each intersection individually but can

cause gridlocks in the network [Gregoire et al., 2015]. Hierarchical distributed control

architectures [Mirchandani and Head, 2001], while alleviating the real time com-

putational complexity, are not able to formally guarantee global behaviors such as

avoidance of traffic jams. We desire a method in which, while control decisions are

optimized locally, desired specifications are guaranteed globally.
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Formal methods for large-scale control is a growing research direction. The main

idea is to divide a large system into smaller subsystems. Ideas based on composi-

tional synthesis [Rungger and Zamani, 2015,Alur et al., 2016,Kim et al., 2015], small

gain theorem [Dallal and Tabuada, 2015, Kim et al., 2017a], and assume-guarantee

reasoning [Henzinger et al., 1998] were used to design controllers individually. Com-

positional methods, ideally and under some assumptions, apply to arbitrarily large

systems. However, searching for contracts for interconnections has a large computa-

tional price and the existing methods are often excessively conservative as the search

is performed over limited families of contracts [Kim et al., 2016]. Separable control

invariant sets [Raković et al., 2010, Nilsson and Ozay, 2016] is an alternative used

for decentralized infinite-time safety control. Controlling based on contracts leads to

decentralized controllers, which do not take advantage of communication between sub-

systems. Numerous methods have been proposed to design static feedback gains that

respect communication constraints or lead to sparse ones [Lin et al., 2013,Fardad and

Jovanovic, 2014,Fattahi et al., 2015,Arastoo et al., 2016,Fazelnia et al., 2017,Fattahi

et al., 2017]. However, these methods are unable to take state and input constraints

into account while disturbances are also present. They do not allow correct-by-design

constraint satisfaction, and one has to test the stabilizing controller to see whether

they fulfill the constraints. This process can be expensive. The authors in [Sum-

mers and Lygeros, 2012,Conte et al., 2012,Wang and Ong, 2017] studied distributed

MPC of linear systems subject to polyhedral and communication constraints, but dis-

turbances were not included, which significantly eases computations. The authors in

[Furieri and Kamgarpour, 2017] studied set-invariance for disturbed networks of linear

systems with communication constraints, but finite-time guarantees were obtained.

Any guarantee in formal synthesis is valid as long as the model is valid. However,

in many engineering applications, perfect models are not available or are too complex
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to use for synthesis purposes. One way to approach a model-free synthesis problem is

to adopt learning-based control methods. For example, [Sadigh et al., 2014,Aksaray

et al., 2016, Li et al., 2017] studied reinforcement learning from temporal logic spec-

ifications. However, a completely model-free approach does not provide any formal

guarantee since it is always possible to observe a new behavior from the system that

may cause the specification to be violated. To overcome this issue, some works pro-

posed considering a (highly non-deterministic) model that contains all the possible

behaviors of the yet-to-be-learned system. Thus, the state-space is safely explored -

in the sense that a temporal logic specification is respected - while a possibly more ac-

curate model and better performance may be obtained during learning [Aswani et al.,

2013, Alshiekh et al., 2017]. In many applications, availability of a model is asking

for too much information. For example, the work in [Aswani et al., 2013] assumes

the prior system to be linear with all unknown non-linearities contained in a known

polytope, which acts as a set-valued additive disturbance. In this setting, the values

representing both the linear model and the disturbance polytope have to be known

beforehand.

1.4 Organization and Highlights of Results

This dissertation is organized as follows.

Chapter 2: Preliminaries

First, the necessary background on temporal logics, its variants, and examples illus-

trating them are provided. Next, discrete-time hybrid systems and formalism of their

various forms are given.
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Chapter 3: Deterministic Hybrid Systems

A framework is developed for optimal control of deterministic mixed-logical dynami-

cal (MLD) systems from signal temporal logic (STL) specifications. Both finite-time

and infinite-time specifications are considered and their solution properties are dis-

cussed. The main contribution is introducing an efficient framework for encoding

STL quantitative semantics into the optimal control problem. Therefore, trajectories

with the highest degree of satisfaction can be computed.

Chapter 4: Non-Deterministic Hybrid Systems

Hybrid systems with additive polytopic disturbances are considered. These models

are ubiquitous in modeling nonlinear systems with an arbitrary degree of precision.

A novel method based on tube model predictive control (MPC) is introduced which

provides firm lower-bounds on the degree of STL satisfaction - for both finite-time

and infinite-time specifications.

Chapter 5: Monotone Systems and Traffic Management

A class of monotone hybrid systems is introduced in which the partial order is defined

on the positive orthant, state components are always non-negative, a unique maximal

disturbance exists, and specifications encourage smaller values for state components.

It is shown that traffic models fulfill these assumptions. We prove open-loop control

policies are (almost) necessary and sufficient to guarantee STL satisfaction. The

computational benefits and usefulness of applying the theoretical results on mixed

urban-freeway traffic management are illustrated.

Chapter 6: Contract-based Design

Control of Large-scale systems is considered. The focus is, again, on monotone sys-

tems and traffic management. We explain how to partition large networks into smaller
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ones, efficiently find contracts characterizing the behavior of interconnections, and

synthesize controllers in a distributed way in an MPC fashion. Two approaches are

taken. In first, contracts are found by decomposing robust control invariant sets in an

augmented form of state-control-space. These contracts are fed to each subsystem’s

MPC constraints. Second, an approach based on contract mining and compositional

synthesis is studied. A library of contracts is found, where a central supervisor assigns

the optimal contracts to the subsystems. We show through simulations that dynamic

contracts achieve better performance than fixed contracts.

Chapter 7: Distributed Robust Set-Invariance

Here we consider large networked linear systems with polytopic additive disturbances

and specifications described as infinite-time polytopic invariance. This problem arises

in many safety-critical applications where hard state and control constraints are im-

portant. We consider two problems. First, given a communication graph charac-

terizing the structure of the information flow in the network, we find the optimal

distributed control policy by solving a single linear program. Second, we find the

sparsest communication graph required for the existence of a distributed invariance-

inducing control policy using mixed-integer linear program. Illustrative examples,

including one on vehicular platooning, are presented.

Chapter 8: Formal Methods for Adaptive Control

We consider a discrete-time system with constant but initially unknown parameters.

The task is to control the system from linear temporal logic (LTL) specifications. We

introduce the notions of non-deterministic parametric and adaptive transition systems

and show how to use tools from automata-based synthesis to compute adaptive control

strategies for finite systems. For infinite systems, we first compute abstractions in the

form of parametric finite quotient transition systems and then apply the techniques for
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finite systems. Unlike traditional adaptive control methods, the approach is correct by

design, does not require a reference model, and can deal with a much broader range

of systems and specifications. Illustrative case studies show that provably correct

adaptive control strategies significantly enhance resilience.

Chapter 9: Formal Model Identification

For many control systems, an accurate (simple) model is asking for too much infor-

mation. Thus, designing controllers with formal performance guarantees is challeng-

ing. A framework is developed to use input-output data from an unknown system

to synthesize controllers from signal temporal logic (STL) specifications. First, by

imposing mild assumptions on system continuity, in a Lipschitz sense, we find a set-

valued piecewise affine (PWA) model that contains all the possible behaviors of the

concrete system. Next, we use tube MPC from chapter 3. Lower-bound certificates

are provided on the degree of STL satisfaction of the closed-loop concrete system.

Illustrative examples are presented.

Chapter 10: Concluding Remarks

This chapter summarizes the results of this thesis and outlines future research direc-

tions.
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Chapter 2

Systems and Specifications

In this chapter, we provide the necessary background on linear-time specifications,

and models for discrete-time systems.

2.1 Specifications

The sets of real, non-negative real, natural numbers, and Boolean values are denoted

by R, R+, N, and B respectively. The empty set is denoted by ∅. Given a set S, we use

|S|, 2S, 2S−∅ to denote its cardinality, power set, and power set excluding the empty set,

respectively. All time intervals are interpreted in discrete-time: [t1, t2] = {t1, · · · , t2},

t, t1, t2 ∈ N, t1 ≤ t2.

An alphabet A is a finite set of symbols A = {a1, a2, · · · , aA}. A finite (infinite)

word is a finite-length (infinite-length) string of symbols in A. For example, σ1 = aba

is a finite word, and σ2 = a(b)ω and σ3 = b(ab)ω are infinite words over A = {a, b},

where ω stands for infinitely many repetitions. We use A∗ and Aω to denote the set

of all finite and infinite words that can be generated from A, respectively. Given an

infinite word σ = a0a1a2 · · · , we use the following notations to refer to specific parts

of σ: σt := at, σ[t1 : t2] := at1at1+1 · · · at2 , and (σ, t) := atat1+1 · · · (also called a

suffix).
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2.1.1 Linear Temporal Logic

Linear temporal logic (LTL) was introduced in [Pnueli, 1977]. Its syntax is recursively

defined over a set of atomic propositions Π as follows:

ϕ ::= True | π | ¬ϕ | ϕ1 ∧ ϕ2 |Xϕ| ϕ1Uϕ2, (2.1)

where π ∈ Π is an atomic proposition, ϕ1, ϕ2, and ϕ are LTL formulas, ¬ stands for

negation, ∧ for conjunction, and X, U, are temporal “next”, and “until” operators,

respectively. Additional Boolean and temporal operators can be derived follows:

• Boolean “disjunction”: ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2);

• temporal “eventually”: Fϕ := TrueUϕ;

• temporal “always”: Gϕ := ¬(F¬ϕ).

LTL semantics is interpreted over suffixes of infinite words over 2Π:

• (σ, t) |= π ⇔ π ∈ σt;

• (σ, t) |= ¬ϕ⇔ (σ, t) 6|= ϕ;

• (σ, t) |= ϕ1 ∧ ϕ2 ⇔ (σ, t) |= ϕ1 ∧ (σ, t) |= ϕ2;

• (σ, t) |= Xϕ⇔ (σ, t+ 1) |= ϕ;

• (σ, t) |= ϕ1Uϕ2 ⇔ ∃t′ ≥ t s. t. (σ, t′) |= ϕ2, (σ, t
′′) |= ϕ1∀t′′ ∈ [t, t′);

where |=: LTL × (2Π)ω × N → {True,False} is the satisfaction function. We write

(σ, t) |= ϕ when |= (ϕ, σ, t) = True. For the derived operators, the semantics is

• (σ, t) |= ϕ1 ∨ ϕ2 ⇔ (σ, t) |= ϕ1 ∨ (σ, t) |= ϕ2;

• (σ, t) |= Fϕ⇔ ∃t′ > t s. t. (σ, t) |= ϕ;



17

• (σ, t) |= Gϕ⇔ ∀t′ > t s. t. (σ, t) |= ϕ.

Definition 1. The language of an LTL formula, denoted by L(ϕ), is defined as:

L(ϕ) := {σ ∈ (2Π)ω
∣∣(σ, 0) |= ϕ}. (2.2)

Definition 2. A Deterministic Rabin Automaton (DRA) is defined as the tuple R =

(S, s0,A, α,Ω), where:

• S is a set of states;

• s0 is the initial state;

• A is a finite set of inputs (alphabet);

• α is a transition function α : S ×A → S;

• Ω = {(F1, I1), · · · , (Fr, Ir)} is a finite set of pairs of sets of states, where Fi, Ii ⊂
S, i = 1, · · · , r.

An infinite word w ∈ Aω determines a sequence of inputs for R that results

in the run ζ(w) = s0s1 · · · , where sk+1 = α(sk, ak), s0 = s0, and ak is the k’th

input appearing in w. We define Inf(ζ) = {s|s appears infinitely often in ζ}. A run

ζ is accepted by R if there exists i ∈ {1, · · · ,m} such that Inf(ζ) ∩ Fi = ∅ and

Inf(ζ) ∩ Ii 6= ∅. In other words, Fi is visited finitely many times and Ii is visited

infinitely often for some i. The language of R, denoted by L(R), L(R) ⊂ Aω , is

defined as the set of all elements in Aω that produce accepting runs.

It is known that given an LTL formula ϕ over Π, one can construct a DRA Rϕ

with input set A = 2Π such that L(Rϕ) = L(ϕ) [Grädel et al., 2002]. Therefore,

verifying whether an infinite word satisfies an LTL formula becomes equivalent to

checking the Rabin acceptance condition. There exists well-established algorithms

and software for this procedure [Klein and Baier, 2006].

Example 1. Consider ϕ = GFπ1 ∧ Fπ2, which is an LTL formula over Π = {π1, π2},
stating that “π1 holds infinitely often, and π2 eventually holds”. The DRA Rϕ
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s0start

s2s1

{π2}

{{π1}, ∅}

{{π1, π2}}{{π1}, {π1, π2}}

{{π2}, ∅} {{π1}, {π1, π2}}

{∅, {π2}}

Figure 2·1: Example 1: DRA corresponding to ϕ = GFπ1 ∧ Fπ2,
where F1 = {s0} (red), I1 = {s2} (green). Runs that visit the green
state infinitely many times and visit the red state finitely many times
satisfy ϕ.

corresponding to this formula is illustrated in Figure 2·1. For example, we have

{π2}{π1, π2} |= ϕ (ϕ is satisfied), but {π1} 6|= ϕ (ϕ is violated since π2 never ap-

pears), and {π1}∅{π2} 6|= ϕ (because π1 does not hold infinitely often).

2.1.2 Metric Temporal logic

Metric temporal logic (MTL) was introduced in [Koymans, 1990]. Though it was orig-

inally proposed for continuous-time systems, its semantics still applies to discrete-time

setting. The main ability in MTL is specifying time bounds for temporal operators,

for which the semantics is naturally defined as:

• (σ, t) |= ϕ1U[t1,t2]ϕ2 ⇔ ∃t′ ∈ [t1, t2] s. t. (σ, t′) |= ϕ2 ∧ ∀t′ ∈ [t1, t), (σ, t
′) |= ϕ;

• (σ, t) |= F[t1,t2]ϕ⇔ ∃t′ ∈ [t1, t2] s. t. (σ, t′) |= ϕ;

• (σ, t) |= G[t1,t2]ϕ⇔ ∀t′ ∈ [t1, t2], (σ, t′) |= ϕ,

where t, t1, t2 ∈ N, t1 ≤ t2. MTL allows punctual operators (e.g., [t1, t1] as interval)

and also unbounded operators (e.g., [t1,∞] as interval ). Since the time is discrete,

there is no theoretical distinction between LTL and MTL as any MTL formula can be
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converted into an LTL formula using LTL’s “next” operator. However, representation

of formulas will be very inefficient. For example, we have the following:

F[2,5]ϕ = XXϕ ∨XXXϕ ∨XXXXϕ ∨XXXXXϕ.

Definition 3. The bound of an MTL formula ϕ, denoted by bϕ, is defined as the time

required to decide the satisfaction of ϕ, which is recursively computed as [Dokhanchi

et al., 2014]:

• bπ = 0;

• bϕ1∧ϕ2 = bϕ1∨ϕ2 = max(bϕ1 , bϕ2);

• bF[t1,t2]ϕ = bG[t1,t2]ϕ = t2 + bϕ;

• bϕ1U[t1,t2]ϕ2 = t2 + max(bϕ1 , bϕ2).

The satisfaction of ϕ by (σ, t) is decided only by σ[t : t + bϕ], and the rest of

the word is irrelevant. Therefore, instead of (σ, t) |= ϕ, we occasionally write σ[t :

t+ bϕ] |= ϕ with the same meaning.

Definition 4. An MTL formula ϕ is bounded if bϕ <∞.

Definition 5. An MTL formula is in negation normal form (NNF) if all negation

operators appear immediately before atomic propositions.

It can be shown that any LTL/MTL formula can be brought into NNF (see, e.g.,

[Baier and Katoen, 2008]).

Definition 6 ([Ouaknine and Worrell, 2006]). A safety MTL formula is an MTL for-

mula that when written in NNF, in which all “until” and “eventually” intervals are

bounded.

Safety formulas are practically ubiquitous. Any MTL formula containing un-

bounded “eventually” or “until” operators can be approximated by an safety MTL

formula by under-approximating the unbounded intervals by bounded intervals. How-

ever, bounded under-approximation is not sound for the unbounded “always” oper-
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ator. A safety formula can be satisfied (respectively, violated) with infinite-length

(respectively, finite-length) signals [Ouaknine and Worrell, 2006].

2.1.3 Signal Temporal logic

Signal Temporal Logic (STL) is a variant of MTL in which atomic propositions are

replaced by predicates over real signals - making it more suitable for systems and

control applications. An n-dimensional real signal is s = s0s1 · · · , s ∈ (Rn)ω. A

predicate over s is in the form (p(s) ≥ 0), where p : Rn → R. We have

(s, t) |= (p(s) ≥ 0)⇔ st ≥ 0.

The rest of STL semantics is similar to those of MTL. STL was also originally in-

troduced in [Maler and Nickovic, 2004] to reason about continuous-time real signals.

However, similar to MTL, its semantics still applies to discrete-time. The main in-

gredient that makes STL popular is its quantitative semantics, defined as follows.

Definition 7. Given predicates on Rn, the STL score is a function ρ : (Rn)ω × STL×
N→ R, which is recursively defined as:

• ρ(s, f(s) ≥ 0, t) = f(st);

• ρ(s, ϕ1 ∧ ϕ2, t) = min(ρ(s, ϕ1, t), ρ(s, ϕ2, t);

• ρ(s, ϕ1 ∨ ϕ2, t) = max(ρ(s, ϕ1, t), ρ(s, ϕ2, t);

• ρ(s,F[t1,t2]ϕ, t) = maxk∈[t1,t2] ρ(s, ϕ, t);

• ρ(s,G[t1,t2]ϕ, t) = mink∈[t1,t2] ρ(s, ϕ, t);

• ρ(s, ϕ1U[t1,t2]ϕ2, t) = maxt′∈[t1,t2] min
{
ρ(s, ϕ, t′),mint′′∈[t1,t) ρ(s, ϕ, t′′)

}
.

As implied by Definition 7, STL score is a measure indicating how strongly a

formula is satisfied by a signal. Positive (respectively, negative) robustness indicates
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satisfaction (respectively, violation) of the formula. STL score function has the fol-

lowing distance property [Maler and Nickovic, 2004]:

∣∣ρ(s, ϕ, k)− ρ(s′, ϕ, t)
∣∣ ≤ sup

k>t
‖sk − s′k‖∞. (2.3)

The following definition is useful:

Definition 8. Given a STL formula ϕ with predicates on Rn, the language realization

set, denoted by LRS(ϕ) is defined as:

LRS(ϕ) =
{
ζ ∈ Rn(bϕ+1)|ζ[0 : bϕ] |= ϕ

}
(2.4)

Example 2. Consider signal r ∈ Rω, where rk = k, k ∈ N, and π = (r2 ≤ 10).

We have ρ(r,G[0,3]π, 0) = min(10 − 0, 10 − 1, 10 − 4, 10 − 9) = 1 (satisfaction) and

ρ(r,F[4,6]π, 0) = max(10− 16, 10− 25, 10− 36) = −6 (violation).

2.2 Systems

Definition 9. A transition system is defined as a tuple (X,U,→), where

• X is the set of states;

• U is the set of controls;

• →∈ X × U ×X is the set of transitions.

A transition system is blocking if for some (x, u) ∈ X × U, 6 ∃x+ ∈ X such that

(x, u, x+) ∈→. A transition system is deterministic if (x, u, x+), (x, u, y+) ∈→, then

x+ = y+.

An alternative formalism of discrete-time systems is adopting the following form:

xt+1 = F (xt, ut, wt), (2.5)

where t, t ∈ N is time, and

• xt ∈ X is the state, X ⊆ Rnr × Bnb ;
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• ut ∈ U is the control input, U ⊆ Rmr × Bmb ;

• wt ∈ W is the disturbance (environment input), W ⊆ Rqr × Bqb .

Note that both X and U may include real and binary values. For instance, the

set of controls in the traffic model developed in Sec. 5.5 includes binary values for

decisions on traffic lights and real values for ramp meters. We usually assume that

X,U are bounded, unless stated otherwise.

Definition 9 is more general than (2.5). We can embed (2.5) in a transition system

(X,U,→), where (x, u, x+) ∈→ if and only if ∃w ∈ W s. t. x+ = F (x, u, w).

2.2.1 Hybrid Models

Definition 9 can be used to embed a broad range of systems. In particular, hybrid

systems, where both discrete and continuous behaviors occur, are particularly inter-

esting. Important models of discrete-time hybrid systems are explained as follows.

Piecewise Affine Systems

Definition 10. A piecewise affine (PWA) system is a transition system, as Definition

9, where x, u, x+ ∈→ if and only if

x+ ∈


{A1x+B1u+ c1} ⊕W1, (x, u) ∈ T1,
...

...
{AMx+BMu+ cM} ⊕WM, (x, u) ∈ TM,

(2.6)

where Ti, i = 1, · · · ,M, are interior-disjoint polyhedral sets such that
⋃M
i=1 Ti =

X × U . The number of modes is M.

We usually assume that the sets of additive disturbances Wi, i = 1, · · · ,M, are

polytopes. PWA systems can handle nonlinearities to an arbitrary degree of accuracy.

The form in (2.6) allows for non-determinism, which enriches the range of behaviors

that it can capture. A PWA system is deterministic if Wi = 0, i = 1, · · · ,M.
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Mixed-logical Dynamical Systems

Definition 11. An MLD system [Bemporad and Morari, 1999] is a system in form

(2.5) which can be written as:

xt+1 = Axt +Buut +Bwwt +Dδδt +Drrt, (2.7a)

Eδδt + Errt ≤ Exxt + Euut + Ewwt + e, (2.7b)

where δt ∈ {0, 1}nδ and rt ∈ Rnr are auxiliary variables and A,Bu, Bw, Dδ, Dr, Eδ,

Er, Ex, Eu, Ew, e are appropriately defined constant matrices such that (2.7) is well-

posed in the sense that given xt, ut, wt, the feasible set for xt+1 is a single point equal

to F (xt, ut, wt) in (2.5). The inequality is interpreted element-wise.

Introducing auxiliary variables and enforcing (2.7b) can capture nonlinear F [Be-

mporad and Morari, 1999]. The system equations are brought into mixed-integer

linear constraints by transforming system (2.5) into its MLD form.

Max-Min-Plus-Scaling Systems

Definition 12. A max-min-plus-scaling (MMPS) system is a system in form (2.5) and

is defined using the following syntax [De Schutter and Van den Boom, 2001]:

F ::= Flinear|max(F1, F2)|min(F1, F2)|F1 + F2|αF, (2.8)

where Flinear stands for linear systems of the following form: x+ = Ax+Buu+Bww,

α ∈ R, and F1, F2 are MMPS systems.

Using min and max operators, MMPS systems can handle discontinuities. MMPS

systems are common in modeling systems with saturation constraints, which are typ-

ical in capacitated flow networks.

2.2.2 Equivalency of Hybrid Models

It was shown in [Heemels et al., 2001] that (deterministic) MMPS, MLD, and PWA

systems are, under mild assumptions, equivalent. It was also shown that linear com-

plementary systems, and extended linear complementary systems, also belong to this
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equivalency class. We do not provide the complete proofs and the underlying proce-

dures, as they are well-documented in [Heemels et al., 2001], but instead show simple

examples. As it turns out, MLD form is the most preferred one as its optimal control

is easily cast as a mixed-integer programming problem.

Example 3 (PWA to MLD). Consider the following discrete-time PWA system which

is a switched system with two modes and bounded X ⊂ R, U = {0, 1}:

x+ =
{
a1x+ c1 u = 0,
a2x+ c2 u = 1, (2.9)

where ai, ci, i = 1, 2, are scalars. Let M > supx∈X |x|. Using big-M method, the

system can translated into MLD form as follows:

a1x+ c1 −Mu ≤ r
a1x+ c1 +Mu ≥ r
a2x+ c2 +Mu−M ≤ r
a2x+ c2 −Mu+M ≥ r
x+ = r

(2.10)

It is straightforward to verify that (2.9) and (2.10) are equivalent.

Example 4 (MMPS to PWA to MLD). Consider the following discrete-time MMPS

system:

x+ = amin(x, x0) + bu+ c (2.11)

where X,U ⊂ R are bounded and x0 is a constant. Note that (2.11) is equivalent to

x+ =
{
ax+ bu+ c x ≤ x0,
ax0 + bu+ c x ≥ x0.

(2.12)

Note that the system is ill-posed for x = x0. Using big-M method, (2.12) is equivalent

to the following form:
ax+ bu+ c−M(1− δ) ≤ r,
ax+ bu+ c+M(1− δ) ≥ r,
ax0 + bu+ c−Mδ ≤ r,
ax0 + bu+ c+Mδ ≥ r,
x ≥ x0 −M +Mδ,
x ≤ x0 +Mδ,
x+ = r,
δ ∈ {0, 1}.

(2.13)

Note that z = 1 and z = 0 imply x ≥ x0, and x ≤ x0, respectively. It is straightfor-

ward to verify that (2.11) and (2.13) are equivalent.
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Chapter 3

Deterministic Hybrid Systems

In this chapter, we introduce a method for control of deterministic MLD systems

from STL specifications. In comparison with the existing works [Karaman et al.,

2008,Raman et al., 2014], a key feature of our method is encoding STL quantitative

semantics using slack variables. Thus no additional binary variable is needed beyond

those required for well-known Boolean encoding. The solution properties are discussed

and numerical examples are presented.

3.1 Problem Formulation

We consider MLD systems without disturbances:

xt+1 = Axt +Buut +Bδδt +Brrt, (3.1a)

Eδδt + Errt � Exxt + Euut + e, (3.1b)

yt = Cxxt + Cuut + c, (3.1c)

where yt ∈ Rny is the system output, and Cx, Cu, and c are appropriately sized

matrices. We consider a negation-free STL formula with ny predicates, each in the

following form:

πi := (yi ≥ 0), (3.2)
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where yi is the i’th component of y. Note that the form in (3.2) is not restrictive, as

yi ≤ 0 can be converted into (3.2) by replacing Cx, Cu, and c by their negative values.

Moreover, a negation appearing immediately before a predicate can be eliminated:

¬(yi ≥ 0)⇒ (yi − ε ≤ 0), (3.3)

where ε > 0 is a number smaller than the machine precision. Our control synthesis

algorithm is optimization based and most solvers can not handle strict inequalities.

If the STL formula ϕ is bounded by bϕ, we are only interested in finding a finite-time

trajectory:

ξfinite := (x0, u0)(x1, u1) · · · (xbϕ , ubϕ). (3.4)

ζfinite := y0y1 · · · ybϕ . (3.5)

Problem 1 (Bounded STL Optimal Control). Given an MLD system (3.1), an initial

condition x∗0, a bounded negation-free STL formula ϕ over predicates of the form

(3.2), and a piecewise linear/quadratic cost function J : ξfinite → R, find controls

ut, t ∈ [0, bϕ], such that ζfinite |= ϕ.

Throughout this thesis, we assume full state knowledge. We also want to find

the set of all possible initial conditions Xmax
0 such that ζfinite |= ϕ if and only if

x0 ∈ Xmax
0 . There are two ways to characterize Xmax

0 . First, it can be represented

as a union of polyhedra - each represented by a finite number linear equalities. This

representation may be computationally prohibitive. An alternative approach is to

design an algorithm that given x0, it checks whether x0 ∈ Xmax
0 . This option is

easier.

The second problem is dealing with infinite-time specifications. We consider spec-

ifications of the following form:

φ = ϕb ∧G[∆,∞)ϕg, (3.6)
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where ∆ ∈ N, and ϕb and ϕg are bounded negation-free STL formulas. We call the

formulae in form of (3.6) as bounded-global STL. It can be shown that (see Appendix)

almost all interesting STL formulae can be written as a finite number of disjunctions

of bounded-global STL formulae. Without loss of generality, we assume ∆ ≥ bϕb .

Our approach to satisfy (3.6) is finding a trajectory that consists of a periodic suffix:

ξinfinite := (x0, u0)(x1, u1) · · · (xT0 , uT0) ((xT0+1, uT0+1) · · · (xT0+T , uT0+T ))ω (3.7)

ζinfinite := y0y1 · · · yT0 (yT0+1yT0+2 · · · yT0+T )ω , (3.8)

where T0 and T are the lengths of the prefix and period of suffix, respectively. These

numbers are user-chosen parameters. Note that we have xT0+1 = F (xT0+T , uT0+T ).

Problem 2 (Bounded-Global STL Optimal Control). Given an MLD system (3.1), an

initial condition x∗0, a bounded global STL formula φ in form of (3.6) over predicates

of the form (3.2), and a piecewise linear/quadratic cost function J : ξinfinite → R, find

controls ut, t ∈ [0, T0 + T ] such that ζinfinite |= φ.

Similar to Problem 1, we also want to find the set of all admissible initial condi-

tions for Problem 2. If satisfaction is impossible for both Problem 1 and Problem 2

satisfaction is impossible, we want to minimize violation by maximizing ρ(ζfinite, ϕ, 0)

or ρ(ζinfinite, φ, 0), respectively.

3.2 Mixed-Integer Formulation

Our approach to both Problem 1 and Problem 2 is casting them as mixed-integer pro-

gramming problems. System 3.1 is already a set of mixed-integer-linear constraints.

We present a method to translate STL formulas into mixed-integer constraints. Con-
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verting logical properties into mixed-integer constraints is a common procedure which

was employed for MLD systems in [Bemporad and Morari, 1999]. The authors in

[Karaman et al., 2008] and [Raman et al., 2014] extended this technique to a frame-

work for time bounded model checking of temporal logic formulas. A variation of this

method is explained here.

For each predicate π = (y ≥ 0), as in (3.2), we define a binary variable zπk ∈ {0, 1}

such that 1 (respectively, 0) stands for true (respectively, false). The relation between

zπ, robustness ρ, and x is encoded as:

y +M(1− zπ) ≥ ρ, (3.9a)

y −Mzπ ≤ ρ. (3.9b)

The constant M is a sufficiently large number such that for all times, M ≥ max yi, i =

1, · · · , ny. In practice, M is chosen sufficiently large such that the constraint y ≤M

is never active. Note that the largest value of ρ for which zπ = 1 is y, which is equal

to the robustness of π.

Now we encode the truth table relations. For instance, we desire to capture

1 ∧ 0 = 0 and 1 ∨ 0 = 1 using mixed-integer linear equations. Disjunction and

conjunction connectives are encoded as the following constraints:

z =
nz∧
i=1

zi ⇒ z ≤ zi, i = 1, · · · , nz, (3.10a)

z =
nz∨
i=1

zi ⇒ z ≤
nz∑
i=1

zi, (3.10b)

where z ∈ [0, 1] is declared as a continuous variables. However, it only can take binary

values as evident from (3.10). Similarly, define zϕk ∈ [0, 1] as the variable indicating
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whether x[k] |= ϕ. An STL formula is recursively translated as:

ϕ =

nϕ∧
i=1

ϕi ⇒ zϕk =

nϕ∧
i=1

zϕik ; (3.11a)

ϕ =

nϕ∨
i=1

ϕi ⇒ zϕk =

nϕ∨
i=1

zϕik ; (3.11b)

ϕ = GIψ ⇒ zϕk =
∧
k′∈I

zψk′ ; (3.11c)

ϕ = FIψ ⇒ zϕk =
∨
k′∈I

zψk′ ; (3.11d)

ϕ = ψ1UIψ2 ⇒ zϕk =
∨
k′∈I

zψ2

k′ ∧
∧

k′′∈[k,k′]

zψ1

k′′

 . (3.11e)

Finally, we add the following constraints:

zϕ0 = 1, ρ ≥ 0. (3.12)

Theorem 1. The set of constraints in (3.9),(3.10),(3.11),(3.12) has the following prop-

erties:

i) we have ζ |= ϕ if the set of constraints is feasible;

ii) we have ζ 6|= ϕ if the set of constraints is infeasible;

iii) the largest ρ such that the set of constraints, while “ρ ≥ 0” is removed from

(3.12), is feasible is equal to ρ(ζ, ϕ, 0).

Proof. i) We provide the proof for (3.10), as the case for more complex STL formulas

are followed in a recursive manner from (3.11). If z = 1, we have from (3.10a) that

zi = 1, i = 1, · · · , nz, which correctly encodes conjunctions. Similarly, z = 1 in
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(3.10b) indicates that not all zi, i = 0, · · · , nz can be zero, or, ∃i ∈ {1, · · · , nz} such

that zi = 1, which correctly encodes disjunctions. ii) Infeasibility can be recursively

traced back into (3.10). For both (3.10a) and (3.10b), if z = 1 is infeasible, it indicates

that zi = 0, i = 1, · · · , nz. iii) We also prove this statement for (3.10) as it is the base

of recursion for general STL formulas. Let zi = (yi ≥ ρ), i = 1, · · · , ny. Consider

(3.10a) and the following optimization problem:

ρmax = argmax ρ,
s.t. yi ≥ ρ, i = 1, · · · , nz,

where its solution is min
i=1,··· ,nz

(yi), which is identical to the quantitative semantics for

conjunction - see Definition 7. Similarly, consider (3.10b) and the following optimiza-

tion problem:

ρmax = argmax ρ,
s.t. ∃i ∈ {1, · · · , nz}, yi ≥ ρ,

where the solution is max
i=1,··· ,nz

(yi), which is identical to the quantitative semantics for

disjunction.

Our integer formulation for Boolean connectives slightly differs from the formula-

tion in [Karaman et al., 2008], [Raman et al., 2014], where lower bound constraints

for the z’s are required. For example, for translating z =
∧nz
i=1 zi, it is required to

add z ≥
∑nz

i=1 zi − nz + 1 to impose a lower bound for z. However, these additional

constraints become necessary only when the negation operator is present in the STL

formula. Hence, they are removed in our formulation. This reduces the constraint

redundancy and degeneracy of the problem. By doing so, we observed computa-

tion speed gains (up to reducing the computation time by 50%) in our case studies.

Moreover, we encode quantitative semantics in a different way than [Raman et al.,

2014], where a separate STL robustness-based encoding is developed which introduces
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additional integers.

In [Raman et al., 2014], min and max operators in Definition 7 were separately

encoded using additional binary variables. We are almost always interested in either

maximizing the STL score, or declaring a constraint that encourages larger STL score

values. Due to property “iii” in Theorem 1, additional integers are not required to

capture STL score hence our framework is computationally more efficient than the

one in [Raman et al., 2014].

3.3 Optimal Control

3.3.1 Finite-Horizon Semantics

The solution to Problem 1 is

u∗0, u
∗
1, · · · , u∗bϕ = arg min

u0,u1,··· ,ubϕ
J(ξfinite) + 1

2
M(|ρ| − ρ)

subject to (3.1), x0 = x∗0, z
ϕ
0 = 1.

(3.13)

Theorem 2. The solution to (3.13) has the following properties:

1. A solution with ρ ≥ 0 is obtained if and only if STL satisfaction is feasible.

2. If STL satisfaction is possible, J(ξfinite) is minimized.

3. If STL satisfaction is impossible, ρ(ζfinite, ϕ, 0) is maximized

Proof. 1) Since all the necessary constraints are included in (3.13) are included, the

solution to (3.13) is sound and complete - no conservativeness is introduced. The proof

follows from a similar argument in [Karaman et al., 2008]. 2) The term 1
2
M(|ρ| − ρ),

which is added to the cost function, is a convex term. By the virtue of Theorem 1, this

leads to maximization of ρ(ζfinite, ϕ, 0). If ρ ≥ 0 is feasible, then 1
2
M(|ρ| − ρ) = 0 and
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the original cost J is minimized. 3) If ρ ≥ 0 is infeasible, then 1
2
M(|ρ| − ρ) effectively

becomes −Mρ. Since M is a very large positive number, ρ is maximized.

Therefore, (3.13) automatically decides to optimize the original cost in case STL

satisfaction is possible, or minimize violation in case STL satisfaction is impossi-

ble. Since all constraints are mixed-integer linear, (3.13) is a MILP/MIQP problem,

depending on whether J is piecewise affine or quadratic.

3.3.2 Infinite-Horizon Semantics

We propose the following solution to Problem 2 is

u∗0, u
∗
1, · · · , u∗T = arg min

u0,u1,··· ,uT
J ′(ξ′finite) + 1

2
M(|ρ| − ρ)

subject to (3.1), x0 = x∗0, z
ϕ
0 = 1.

xT0+1 = F (xT0+T , uT0+T ),

(3.14)

where ϕ = ϕb ∧G[∆,T )ϕg and

ξ′finite = (x0, u0)(x1, u1) · · · (xT+bϕ , uT+bϕ),

and J ′ is defined in appropriate way - which is always possible as J ′ has more argu-

ments than J . We prove that (3.14), if feasible, provides a suboptimal solution to

Problem 2.

Theorem 3. If a solution to (3.14) with ρ ≥ 0 exists, then ζinfinite |= φ.

Proof. The proof is straightforward from the periodicity of the suffix. We only need

to prove that ζ[t, t+ bϕg ] |= ϕg, ∀t > ∆. The case up to t = T is already given. From

periodicity we have ζ[t + k(T − T0), t + bϕg + +k(T − T0)] = ζ[t, t + bϕg ],∀k ∈ N.

Therefore, ζ[t, t+bϕg ] = ζ[T0 +rem(t−T0, T −T0), T0 +rem(t−T0, T −T0)+bϕg ] |= ϕ.
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Similar to the result in Theorem 2, STL score is maximized if (3.14) fails to find a

trajectory satisfying φ. However, in contrast to the finite-horizon case, completeness

property does not hold as feasibility depends on choices of T0 and T . Intuitively,

larger values of T0 and T may result in feasibility.

3.4 Initial Conditions

Now we describe how to find the set of admissible initial conditions.

3.4.1 Feasibility Check

As mentioned earlier, a simple way to obtain a set of admissible initial conditions is

sampling points from X, and checking whether x0 ∈ Xmax
0 by feasibility of (3.13) or

(3.14). In case of (3.13), no conservativeness is introduced hence Xmax
0 is constructed

by exhaustive sampling. However, this approach is naive.

3.4.2 Quantifier Elimination

The alternative way to obtain Xmax
0 (in case of finite-horizon) is to eliminate quanti-

fiers from (3.13). In other words, we project the intersection of language realization set

and possible trajectories X. The details are outlined in [Sadraddini and Belta, 2016a],

where Fourier-Motzkin elimination method is used. Alternative projection methods,

such as approximate sampling based projection (e.g., see [Jones et al., 2004]) can also

be used.



35

L

v

s

Figure 3·1: A car is moving toward a traffic light. If encountered by
yellow light, the choice has to be made about stopping before the traffic
light or clear the intersection before the traffic light turns red.

3.5 Examples

Example 5. We aim to find the feasibility envelope of a car passing an intersection

(as shown in Fig. 3·1). We consider the following double integrator model for the

car: (
st+1

vt+1

)
=

(
1 1
0 1

)(
st
vt

)
+

(
0
1

)
ut, (3.15)

where state is x = (s, v)T . The state space is given by X = {0 ≤ v ≤ 2} and the

acceleration input u is bounded to U =
{
u
∣∣− 0.3 ≤ u ≤ 0.2

}
. We recall the MTL

specification:

yellow→ F[0,T ] (((x ≤ 0) ∧ (v = 0)) ∨ (x ≥ 10)) . (3.16)

We construct LRS(ϕ) in 2(T + 1) dimensional space, and use Fourier-Motzkin elim-

ination method to find Xmax
0 in 2-dimensional space. The feasibility envelope for

different values of T is shown in Fig. 3·2. For instance, for T = 8 it is observed that

the feasibility envelope has two cavities. The physical interpretation of the lower cav-

ity is straightforward but it is more subtle for the upper cavity, which explains that

cars require to start to speed down within a certain distance from the intersection.

On the other hand, if the light is still not turned yellow, cars can increase speed be-

fore reaching the intersection. This practice is not considered and recommended for

human drivers [Liu et al., 1996], but is potentially applicable to autonomous driving.
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For comparison, we have simulated two trajectories for the case T = 8. The first

is a car driving with constant velocity v = 1.9 and the second is a car driving within

the feasibility envelope but uses a one-step look ahead strategy to maximize its speed.

The results are shown in Fig. 3·3. It is observed that the the state of the first car

evolves out of the feasibility envelope at a time point. Therefore, if the light is turned

yellow, the car is not able to stop before the traffic light or clear the intersection.

However, the second car, although driving faster in average, is guaranteed to be able

to properly respond to the yellow light.

Example 6. We consider a PWA system 2D with 4 modes:

A1 =

(
1 1
−0.7 1

)
, B1 =

(
0
1

)
, c1 =

(
−5
0

)
(3.17a)

A2 =

(
1.3 1.3
0 1.3

)
, B2 =

(
0
1

)
, c2 =

(
0
0

)
(3.17b)

A3 =

(
0.7 0.7
−0.3 0.7

)
, B3 =

(
0
−1

)
, c3 =

(
5
0

)
(3.17c)

A4 =

(
1.3 1
0.3 0.7

)
, B4 =

(
0
1

)
, c4 =

(
1
0

)
(3.17d)

We consider the region X = [−20, 20], and admissible set of controls U = [−1010].

We are interested in the following specification:

ϕ = F[0,15]G[0,2]ψ1 ∧ F[15,30]ψ2 ∧G[0,30]¬ψ3, (3.18)

where:

ψ1 = (x[1] ≥ −15) ∧ (x[2] ≥ −15) ∧ (x[1] ≤ −10) ∧ (x[2] ≤ −10) (3.19a)
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Figure 3·2: Example 5: The feasibility envelope of the yellow light
dilemma problem is the green shaded area shown for different values of
T . The traffic light is located at s = 0 and the end of the intersection
is at s = 10.

ψ2 = (x[1] ≥ 10) ∧ (x[2] ≥ 10) ∧ (x[1] ≤ 15) ∧ (x[2] ≤ 15) (3.19b)

ψ3 = (x[1] ≥ 0) ∧ (x[2] ≥ 2) ∧ (x[1] ≤ 15) ∧ (x[2] ≤ 8) (3.19c)

Sub-specifications ψ1, ψ2 and ψ3 correspond to rectangular regions in X. Figure 3·4

shows the workspace with the vector fields in each region. In plain English, (3.18)

states that ψ1 is satisfied for 3 consecutive time steps between [0, 15], ψ2 is satisfied

at least once in [15, 30], and ψ3 is never satisfied between [0, 30]. The cost function is
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Figure 3·3: Example 5 : Two sample trajectories: (red) car driving
at constant velocity v = 1.9 does not consider the feasibility envelope
and is not guaranteed to be able to react properly to the yellow light.
(blue) car driving inside the feasibility envelope with maximum speed.
The car slows down before reaching the intersection (s = −8) but, in
case of not encountering yellow light, starts to speed up at s = 6.

considered as L2 norm of controls:

J =
30∑
t=0

u2
t .

The initial condition is x0 = (−15, 10)T . Three trajectories are shown in Figure 3·4.

The top left is the optimal one. It was computed using a MILP of 241 continuous, 572

binary variables and 2138 constraints in 150 seconds on a iMac quad-core 2.8 GHz

Intel Core i5 machine. The obtained STL score is 0, which is the smallest possible. It

is observed that the trajectory touches the boundaries of the rectangles, and further

getting distance into ψ1 and ψ2 and away from ψ3 increases control effort. The bottom

left trajectory is the one with maximum possible STL score, which is equal to 2.5 and

it was computed in 5 seconds. It is observed that the trajectory visits the centers of

ψ1 and ψ2, and keeps a notable distance from ψ3.

In order to obtain a trajectory with violation, we shrink U to [−2, 2] to tighter

the constraints. A maximally satisfying trajectory from x0 = (−10, 5)T is shown in

bottom right with ρ(ζ, ϕ, 0) = −3.9. A feature of STL score is that predicates can be

weighted. In order to obtain the latest trajectory, we multiplied the predicates of ψ3

by 10 to further penalize violating trajectories entering ψ3.
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Figure 3·4: Example 3.19: [Top left] The vector field and the rect-
angular regions [Top right] Control-effort-optimal satisfying trajectory
[Bottom left] Maximally satisfying trajectory [Bottom right] Minimally
violating trajectory with U = [−2, 2].

An example of an infinite-time specification for a PWA system is presented in

Chapter 9.
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Chapter 4

Non-Deterministic Hybrid Systems

In this chapter, the objectives are similar to Chapter 3, but uncertainties in form of

additive disturbances are added to the system, which makes the problem much more

difficult. The open-loop control sequences obtained in Chapter 3 are no longer the

best solution as the trajectory will deviate from the planned one in a non-deterministic

way. A feedback mechanism is necessary. The works in [Raman et al., 2015,Farahani

et al., 2015,Sadraddini and Belta, 2015] considered receding horizon open-loop plan-

ning, where the controls at each time were chosen to be robust against all possible

uncertainties within the horizon. This approach is severely conservative, as it is well-

known that the set of open-loop robust feasible solutions is much smaller (it is often

empty) than the set of feedback policies, which are given by dynamic programming.

However, performing the Bellman iterations is intractable for PWA systems and STL

specifications. A trade-off between complexity and completeness is necessary. We

use the ideas of tube-MPC [Mayne et al., 2005], which was originally developed for

constrained control of linear systems. The contribution of this chapter is tube-based

STL control method for PWA systems. The idea is to break the controller design into

two components: an open-loop policy for the system without disturbances (similar to

Chapter 3), and an ancillary controller that is designed to handle disturbances in an

optimal manner. The main challenge is dealing with mode transitions.
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Notation

We retain the notation from previous chapters. Given two sets A,B ⊂ Rn, we denote

their Minkowski sum by A⊕B = {a+ b|a ∈ A, b ∈ B} and Pontryagin difference by

A	B = {a ∈ A|a⊕B ⊆ A}.

4.1 Problem Formulation

We consider a PWA system F = (X,U,→), X ⊂ Rn, U ⊂ Rm, as a transition system

as Definition 9, such that (x, u, x+) ∈→ if and only if:

x+ ∈


{A1x+B1u+ c1} ⊕W1, x ∈ X1,
...

...
{AMx+BMu+ cM} ⊕WM, x ∈ XM,

(4.1a)

yt = Cxxt + Cuut + c, (4.1b)

where Xi, i = 1, · · · ,M, are polyhedral sets with disjoint interiors,
⋃M
i=1(Xi) = X,

M is the number of modes, and Wi ∈ Rn, i = 1, · · · ,M, are polytopic sets of additive

disturbances. Each mode is an affine system with constants Ai ∈ Rn×n, Bi ∈ Rn×m

and ci ∈ Rn. The difference between (2.6) and (4.1) is that in latter, control space

is not partitioned. This assumption disables us from considering systems where the

switches are explicitly dependent on controls.

Definition 13. A control policy µ : X∗ × U∗ → U is a function that determines the

control input at time t as a feedback of the history of the system:

ut = µ(x0x1 · · ·xt, u0u1 · · ·ut−1). (4.2)

Definition 14. Given a control system F = (X,U,→), a control policy µ, a set of
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initial conditions X0 ⊆ X, predicates as in (3.2),(4.1b), we define the closed-loop

language as L = L(F,X0, µ) ⊂ (Rny)ω such that y0y1 · · · ∈ L if and only if x0 ∈ X0

and

(xk, µ(x0x1 · · ·xt, u0u1 · · ·ut−1), xk+1) ∈→, yk = Cxxt + Cuut + c,∀k ∈ N.

Problem 3. Given a PWA system (4.1), an initial condition x∗0, a bounded STL

formula ϕ over predicates of the form (3.2), (4.1b), find a control policy µ and a set

of initial conditions X0 such that ζinfinity |= ϕ, ∀ζinfinity ∈ L(F,X0, µ)

We note that we provide the solution for bounded-global specifications, but the

methods in this chapter are immediately applicable to bounded-global specifications

as well. We will elaborate on this shortly. Similar to Chapter 3, when satisfaction is

infeasible, we look for minimal violation. Problem 3 is difficult as one has to search

over control policies and not control inputs. Even for for small problems, Problem 3

is often intractable. For example, if ϕ is a set-invariance specification, the complete

solution to Problem 3 is equivalent to finding the maximal robust control invariant

(RCI) set, which is undecidable, in general [Blanchini, 1999].

4.2 Tube STL Control

We propose µ to be of the following form:

µ(x0x1 · · · xt, u0u1 · · ·ut−1) = µnom(x0, t) + µfb(xt), (4.3)

where µnom : X × N → U is an open-loop control policy and µfb : Rn → U is a

state-feedback control policy. Roughly, µnom(x0) is computed offline and planned for
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nominal system, while µfb is the ancillary controller that corrects the deviations from

the nominal trajectory in an online manner. We design µfb for all possible switchings

of the system. This approach is conservative, but decouples the design of µfb and µnom.

Note that µfb(xt) has access to the knowledge of mode at time t. Thus, the mode

is observable but its future is not modeled. The reason is that STL specifications

are complicated and desirable trajectories often traverse through polyhedral regions

Xi, i = 1, · · · ,M, in a complicated manner.

Definition 15. Given a PWA system as in (4.1), the nominal PWA system is defined

as function fnom : X × U → Rn, where:

fnom(x, u) = Aix+Biu+ ci, x ∈ Xi. (4.4)

Since it is deterministic, controlling the nominal PWA system from STL specifi-

cations can be accomplished by the techniques outlined in Chapter 3.

Definition 16. Given a PWA system as in Definition 4.1, the switching-disturbance

system for mode σ ∈ {1, · · · ,M} is defined as as Fswd = ((Rn × {1, · · · ,M},U,→

such that ((x, σ), u, x+) ∈→ if and only if:

x+ ∈ {Aσx+Bσu} ⊕Wσ, (4.5)

where σ ∈ {1, · · · ,M}.

The switching-disturbance system is an aggregation of linear systems with poly-

topic disturbances. Its switching behavior is considered arbitrary. Following the

earlier explanation, the mode is observable so it is considered as part of the state,

Definition 17. A tube for (4.5) is a robust control invariant (RCI) [Blanchini, 1999]

set TX ⊂ Rn, associated with a control policy µtube : Rn × {1, · · · ,M} → Rm, such



44

that the following relation holds:

L(Fswd, TX , µ
tube) ⊆ T ω, (4.6)

i.e., the trajectory is always confined to T . Moreover, the set TU ⊂ Rm is defined as:

Tu :=
{
µtube(x, σ)

∣∣x ∈ TX , σ ∈ {1, · · · ,M}} . (4.7)

A tube is a RCI set for Fswd. The invariance-inducing control policy can be

rewritten as µtube : TX × {1, · · · ,M} → Tu. The following theorem is the key result

of this chapter.

Theorem 4. Consider a PWA system F as in (4.1), its nominal and switching-

disturbance versions fnom and Fswd, initial condition x0 ∈ X, and an STL formula φ

with predicates in the form of (3.2),(3.1c). Let T and µtube : T × {1, · · · ,M} → Tu

be a tube and its invariance controller, respectively. Assume x0 ∈ X. Let µnom :

(X) × N → (U 	 TU) be an open-loop control policy such that it results in the

following nominal trajectory:

ξnom = (xnom
0 , unom

0 ), (xnom
1 , unom

1 ), · · · ,

ζnom = ynom
0 , ynom

1 , · · · ,

and the following condition holds:

xnom
k ∈ Xσ 	 TX ,∀k ∈ N (4.8)
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for some σ ∈ {1, · · · ,M}. Then, by replacing the following policy in (4.3)

µ(xt) = µtube(xt − xnom
t ,Σ(xt)), (4.9)

where Σ : X → {1, · · · ,M} returns the current mode, then for all possible trajectories

ζ ∈ L(F, µ, {xnom
0 } ⊕ T ), the following guarantee holds:

ρ(ζ, φ, 0) ≥ ρ(ζnom, φ, 0)− max
x∈TX ,u∈TU

‖Cxx+ Cuu‖∞. (4.10)

Proof. First, we show that the closed-loop trajectories remain within T -vicinity of

the nominal trajectory. The proof is by induction. If xt ∈ {xnom
t } ⊕ T implies xt+1 ∈

{xnom
t+1 }⊕TX , which is immediately verified by the fact that TX is a mode-agnostic RCI

set: for all the points in {xnom
t+1 }⊕TX , for all modes, there exists a control input in Tu

to keep the state within TX . Note that all points in xt ∈ {xnom
t }⊕T belong to a single

polyhedral region, as implied by (4.8). Next, any trajectory within T -vicinity of the

nominal trajectory can decrease the STL score by at most max
x∈TX ,u∈TU

‖Cxx + Cuu‖∞,

which is the largest possible change in the value of a predicate of forms in (3.2),(3.1c).

The rest of the proof holds by (2.3).

4.3 Tube Design

We desire a tube with minimal max
x∈TX ,u∈TU

‖Cxx+Cuu‖∞. Finding the maximal robust

control invariant (RCI) set - a fixed-point - is a well-known undecidable problem

[Blanchini, 1999]. Moreover, performing the fixed-point algorithm for PWA systems

with additive disturbances is computationally challenging [Raković et al., 2004]. We
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desire finding the smallest RCI set. The authors in [Raković et al., 2007] formulated

finding RCI sets for linear systems with polytopic disturbances and constraints as

convex optimization problems - hence the cost function could be designed to promote

smaller RCI sets. However, the method in [Raković et al., 2007] does not apply to

switching systems. Here we propose a new method to compute optimized RCI sets

for switching systems with additive disturbances.

4.3.1 Set-Parameterization

We parameterize the RCI sets by a user-specified number of hyper-rectangles. For

each mode, there should exist a control input for each vertex of the hyper-rectangles

such that for all allowable disturbances the vertex finds a successor in at least one

of the hyper-rectangles - hence we enforce invariance by design. We show that the

convex-hull of the hyper-rectangles is a RCI set. Define Γ, a positive integer, axis-

aligned hyper-rectangles as

R(pγ, aγ) := {x ∈ Rn|aγ ≤ x ≤ pγ + aγ} ,

where pγ ∈ Rn, aγ ∈ Rn
+. γ = 1, · · · ,Γ, are the lower-left corners and sides, respec-

tively. The vertices of these hyper-rectangles are denoted by qγk , k = 1, · · · , 2n, γ =

1, · · · ,Γ. Note that R(pγ, aγ) = Convh
(
{qγk}k=0,··· ,2n−1

)
. Let θ := {pγ, aγ}γ=1,··· ,Γ

be a set of 2nΓ decision variables. The vertex representation of disturbance sets are

denoted by Wσ = Convh(wσ,1, · · · , wσ,dσ), σ ∈ {1, · · · ,M}, where dσ ∈ N+ is the

number of vertices of Wσ. We define

T (θ) := Convh
(
{qγk}γ=1,··· ,Γ,k=1,··· ,2n

)
. (4.11)
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Lemma 1. If there exists uγk,σ ∈ Rm, γ = 1, · · · ,Γ, k = 1, · · · , 2n, σ ∈ {1, · · · ,M},

such that

yγk,σ,j ∈
Γ⋃
γ=1

R(pγ, aγ), (4.12)

where yγk,σ,j := Aσp
γ
k +Bσu

γ
k,σ + wσ,j. Then T (θ) is a tube with

Tu(θ) = Convh{uγk,σ}k=1,··· ,2n,γ=1,··· ,Γ,σ∈{1,··· ,M}.

Proof. Consider any point x ∈ T (θ). There exists λγk ≥ 0,
∑Γ

γ=1

∑2n

k=1 λ
γ
k = 1, such

that x =
∑Γ

γ=1

∑2n

k=1 λ
γ
kq
γ
k . Now introduce the control input vσ :=

∑Γ
γ=1

∑2n

k=1 λ
γ
ku

γ
k,σ.

Note that vσ ∈ Tu since it is a convex combination of 2nΓ points in Tu. We have the

following deductions:

y = Aσx+Bσvσ + wσ,j
= Aσ

∑Γ
γ=1

∑2n−1
k=0 λγkq

γ
k +Bσ

∑Γ
γ=1

∑2n

k=1 λ
γ
ku

γ
k,σ + wσ,j

=
∑Γ

γ=1

∑2n

k=1 λ
γ
k(Aσq

γ
k +Bσu

γ
k,σ + wσ,j)

=
∑Γ

γ=1

∑2n

k=1 λ
γ
ky

γ
k,σ,j ∈ T (θ)

⇒ (Aσx+Bσvσ)⊕ {wσ,j}j=1,··· ,dσ ⊆ T (θ).

Taking the convex hulls of both sides, we obtain {Aσx+Bσvσ}⊕Wσ ⊆ T (θ) and the

proof is complete.

4.3.2 Optimization

The conditions in Lemma 1 are formulated as a set of constraints. Eq. (4.12) is

equivalent to the following Boolean logic formula being true for γ = 1, · · · ,Γ, k =

1, · · · , 2n, σ ∈ {1, · · · ,M}, j = 1, · · · , dσ:

Γ∨
β=1

(
(pβ ≤ yγk,σ,j) ∧ (yγk,σ,j ≤ pβ + aβ)

)
. (4.13)
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We encode (4.13) using binary decision variables and big-M method - technically

similar to Sec. 9.3.2. Using basic convexity notions, we formulate the following

MILP:
θ∗ = arg min

θ
ξ

s.t. ‖qγk‖∞ ≤ ξ, k = 1, · · · , 2n,
(4.11), (4.12), (4.13), γ = 1, · · · ,Γ.

(4.14)

The solution of (4.14) yields the smallest tube. A corresponding invariance-inducing

control policy µtube can be designed from the proof of Lemma 1:

µtube(x, σ) = arg min
u

J(u)

subject to x =
∑Γ

γ=1

∑2n

k=1 λ
γ
kq
γ
k

u =
∑Γ

γ=1

∑2n

k=1 λ
γ
ku

γ
k,σ,

λγk ≥ 0,
∑Γ

γ=1

∑2n

k=1 λ
γ
k = 1.

(4.15)

where J(u) is a user-defined convex linear/quadratic cost function. Eq. (4.15) is a

linear/quadratic program with 2nΓ decision variables. Thus, µtube takes a PWA form.

A proper choice for J(u) is ‖Aσx + Bσu‖∞, which penalizes the distance from the

center of the tube.

4.4 Example

Example 7. Consider the system in Example 3.19. First, we compute the smallest

tube. We let r = 3, and obtain a tube with TX ⊂ [−1.14 1.14] and TU ⊂ [−1.96 1.96].

The tube is illustrated in Figure 4·1. The tube was constructed in 150 seconds.

The largest STL violation permitted by the tube is 1.14. Next, we consider the

initial condition x0 = (−15, 10)T and design a nominal control policy with STL score

greater than 1.14, hence all disturbed trajectories are guaranteed to satisfy ϕ. Since

the maximum deterministic STL score is 2.5, we have a policy that the worst-case

STL score for disturbed trajectories is 2.5 − 1.14 = 1.36. Sample trajectories are
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Figure 4·1: Example 7: The smallest tube generated by three hyper-
rectangles.

shown in Figure 4·2.
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Figure 4·2: Example 7: [Left]: Tube-based design with all trajec-
tories guaranteed to have STL score greater than 0. [Right]: Design
corresponding to the maximum worst-case STL score 1.36.
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Chapter 5

Monotone Systems and Traffic Networks

In this chapter, we study optimal STL control of discrete-time positive monotone

systems (i.e., systems with state partial order on the positive orthant) with bounded

disturbances. The STL specifications in this chapter are restricted to a particular

form that favors smaller values for the state components. We assume that there

exists a maximal disturbance element that characterizes a type of upper-bound for

the evolution of the system. These assumptions are specifically motivated by the dy-

namics of traffic networks, where the disturbances represent the volume of exogenous

vehicles entering the network and the maximal disturbance characterizes the rush

hour exogenous flow. Our optimal control study is focused on STL formulae with

infinite-time safety/persistence properties, which is relevant to optimal and correct

traffic control in the sense that the vehicular flow is always free of congestion while

the associated delay is minimized.

The key contributions of this chapter are as follows. First, for finite-time se-

mantics, we prove that the existence of open-loop control policies is necessary and

sufficient for maintaining STL correctness. However, we use MPC, which has a closed-

loop nature, to achieve optimality. The main contribution of our STL MPC algorithm

is guaranteed recursive feasibility. We show via a case study that our method is ap-

plicable to systems with relatively high dimensions.
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This chapter is organized as follows. The problems are formulated in Sec. 8.1.

The technical details for control synthesis from finite and infinite-time specifications

are given in Sec. 8.3 and Sec. 8.4, respectively. The robust MPC framework is

explained in Sec. 5.4. Finally, we introduce a traffic network model and explain its

monotonicity properties in Sec. 5.5, where a case study is also presented.

Notation

For two integers a, b, we use rem(a, b) to denote the remainder of division of a by b

(modulus). Given a set S and a positive integer K, we use the shorthand notation SK

for
∏K

i=1 S. A signal is defined as an infinite sequence s = s0s1 · · · , where sk ∈ S, k ∈

N. Given s1, s2, · · · , sK ∈ S, the repetitive infinite-sequence s1s2 · · · sKs1s2 · · · sK · · ·

is denoted by (s1s2 · · · sK)ω. The set of all signals that can be generated from S is

denoted by Sω. We use s[k] = sksk+1 · · · and s[k1 : k2] = sk1sk1+1 · · · sk2 , k1 < k2, to

denote specific portions of s. A real signal is r = r0r1r2 · · · , where rk ∈ Rn,∀k ∈ N.

A vector of all ones in Rn is denoted by 1n. We use the notation 1n[0 : K] :=

1n · · · 1n, where 1n is repeated K + 1 times. The positive closed orthant of the n-

dimensional Euclidian space is denoted by Rn
+ :=

{
x ∈ Rn|x[i] ≥ 0, i = 1, · · · , n

}
,

where x = (x[1], x[2], · · · , x[n])
T . For a, b ∈ Rn, the non-strict partial order relation �

is defined as: a � b⇔ b− a ∈ Rn
+.

Definition 18 ([Davey and Priestley, 2002]). A set X ⊂ Rn
+ is a lower-set if ∀x ∈

X , L(x) ⊆ X , where L(x) :=
{
y ∈ Rn

+

∣∣y � x
}
.

It is straightforward to verify that if X1,X2 are lower-sets, then X1 ∪ X2 and

X1 ∩ X2 are also lower-sets. We extend the usage of notation � to equal-length real

signals. For two real signals r, r, we denote r′[t′1 : t′2] � r[t1 : t2], t2 − t1 = t′2 − t′1, if

r′t′1+k � rt1+k, k = 0, 1, · · · , t2 − t1. Moreover, if r, r′ ∈ (Rn
+)ω, we are also allowed to
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write r′[t′1 : t′2] ∈ L(r[t1 : t2]).

5.1 Problem Statement and Approach

We consider discrete-time systems of the following form:

xt+1 = f(xt, ut, wt), (5.1)

where xt ∈ X is the state, X ⊂ Rn
+, ut ∈ U is the control input, U = Rmr × {0, 1}mb ,

and wt ∈ W is the disturbance (adversarial input) at time t, t ∈ N,W = Rqr×{0, 1}qb .

The sets U andW may include real and binary values. For instance, the set of controls

in the traffic model developed in Sec. 5.5 includes binary values for decisions on traffic

lights and real values for ramp meters. These types of systems are positive as all state

components are non-negative. We also assume that X is bounded.

Definition 19. System (5.1) is monotone (with partial order on Rn
+) if for all x, x′ ∈ X ,

x′ � x, we have f(x′, u, w) � f(x, u, w),∀u ∈ U ,∀w ∈ W .

The systems considered in this chapter are positive and monotone with partial

order on Rn
+. For the remainder of this chapter, we simply refer to systems in Defini-

tion 19 as monotone 1. Although the results of this chapter are valid for any general

f : X × U × W → X , we focus on systems that can be written in the form of

mixed-logical dynamical (MLD) systems.

Assumption 1. There exist w∗ ∈ W such that

∀x ∈ X ,∀u ∈ U , f(x, u, w) � f(x, u, w∗),∀w ∈ W . (5.2)

1The term cooperative in dynamics systems theory is used specifically to refer to systems that
are monotone with partial order defined on the positive orthant. We avoid using this term here as
it might generate confusion with the similar terminology used for multi-agent control systems.
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We denote f(x, u, w∗) by f ∗(x, u) and refer to f ∗ as the maximal system. As it

will be further explained in this chapter, the behavior of monotone system (5.1) is

mainly characterized by its maximal f ∗. Assumption 1 is restrictive but holds for

many compartmental systems where the disturbances are additive and the compo-

nents are independent. Therefore, the maximal system corresponds to the situation

that every component takes its most extreme value. We also note that if Assumption

1 is removed, overestimating f by some f ∗ such that f(x, u, w) � f ∗(x, u),∀w ∈ W , is

always possible for a bounded f . By overestimating f the control synthesis methods

of this chapter remain correct, but become conservative.

We describe the desired system behavior using specifications written as STL for-

mulas over a finite set of predicates. We assume that each predicate π is in the

following form:

π =
(
aTπx ≤ bπ

)
, (5.3)

where aπ ∈ Rn
+, bπ ∈ R+. It is straightforward to verify that the closed half-space

defined by (5.3) is a lower-set in Rn
+. By restricting the predicates into the form

(5.3), we ensure that a predicate remains true if the values of state components are

decreased (Note that this is true for any lower set. We require linearity in order to de-

crease the computational complexity.). This restriction is motivated by monotonicity.

For example, in a traffic network, the state is the vector representation of vehicular

densities in different segments of the network. The satisfaction of a “sensible” traffic

specification has to be preserved if the vehicular densities are not increased all over

the network. Otherwise, the specification encourages large densities and congestion.

Definition 20. A control policy µ :=
⋃
t∈N µt is a set of functions µt : X t+1 → U ,

where

ut = µt(x0, x1, · · · , xt).
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An open-loop control policy takes the simpler form ut = µt(x0), i.e., the decision

on the sequence of control inputs is made using only the initial state x0. On the other

hand, in a (history dependent) feedback control policy, ut = µt(x0, x1, · · · , xt), the

controller implementation requires real-time access to the state and its history.

An infinite sequence of admissible disturbances is w = w0w1 · · · , where wk ∈ W ,

k ∈ N. Following the notation introduced in Sec. 5, the set of all infinite-length

sequences of admissible disturbances is denoted by Wω. Given an initial condition

x0, a control policy µ and w ∈ Wω, the run of the system is defined as the following

signal:

x = x(x0, µ,w) := x0x1x2 · · · ,

where xt+1 = f(xt, ut, wt),∀t ∈ N. Now we formulate the problems studied in this

chapter. In all problems, we assume a monotone system (5.1) is given, Assumption 1

holds, and all the predicates are in the form of (5.3).

Problem 4 (Bounded STL Control). Given a bounded STL formula ϕ, find a set of

initial conditions X0 ⊂ X and a control policy µ such that

x(x0, µ,w)[0] |= ϕ, ∀w ∈ Wω,∀x0 ∈ X0.

As mentioned in the previous section, the satisfaction of ϕ solely depends on

x[0 : hϕ], where hϕ is obtained from Definition 3. The horizon hϕ can be viewed as

the time when the specification ends. In many engineering applications, the system

is required to uphold certain behaviors for all times. Therefore, guaranteeing infinite-

time safety properties is important. We formulate bounded-global STL formulas in

the form of

ϕb ∧G[∆,∞]ϕg, (5.4)
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where ϕb, ϕg are bounded STL formulas, G[∆,∞] stands for unbounded temporal “al-

ways”, and ∆ ≥ hϕb is a positive integer. Formula (6.9) states that first, ϕb is satisfied

by the signal from time 0 to ∆, and, afterwards, ϕg holds for all times.

Problem 5 (Bounded-global STL Control). Given bounded STL formulas ϕb, ϕg, ∆ ∈

[hϕb ,∞), find a set of initial conditions X0 ⊂ X and a control policy µ such that

x(x0, µ,w)[0] |= ϕb ∧G[∆,∞]ϕg,∀w ∈ Wω,∀x0 ∈ X0. (5.5)

As a special case, we allow ϕb to be logical truth so Problem 5 reduces to global STL

control problem of satisfying G[∆,∞]ϕg. Note that if ϕg is replaced by logical truth,

Problem 5 reduces to Problem 4. We have distinguished Problem 4 and Problem 5

as we use different approaches to solve them.

It can be shown that (see Appendix) a large subset of safety STL formulas can

be written as
∨nφ
i=1 φi, where each φi, i = 1, · · · , nφ, is a bounded-global formula.

Therefore, the framework for solutions to Problem 5 can also be used for safety STL

control as it leads to nφ instances of Problem 5, where a solution to any of the

instances is also a solution to the original safety STL control problem. The drawback

to this approach is that nφ can be very large.

Remark 1. We avoid separate problem formulations for STL formulas containing un-

bounded “eventually” or “until” operators as their unbounded intervals can be safely

under-approximated by bounded intervals. However, bounded under-approximation

is not sound for the unbounded “always” operator. A safety formula can be sat-

isfied (respectively, violated) with infinite-length (respectively, finite-length) signals

[Ouaknine and Worrell, 2006].

In the presence of disturbances, feedback controllers obviously outperform open-
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loop controllers. We show that the existence of open-loop control policies for guaran-

teeing the STL correctness of monotone systems in Problem 1 (respectively, Problem

2) is sufficient and (respectively, almost) necessary. The online knowledge of state is

not necessary for STL correctness. But it can be exploited for planning controls op-

timally. While our framework can accommodate optimal control versions of Problem

4 and Problem 5, the focus of this chapter is on robust optimal control problem for

global STL formulas - of form G[0,∞)ϕ, where ϕ is a bounded formula. These type

of problems are of practical interest for optimal traffic management (as discussed in

Sec. 5.5).

We use a model predictive control (MPC) approach, which is a popular, pow-

erful approach to optimal control of constrained systems. Given a planning hori-

zon of length H 2, a sequence of control actions starting from time t is denoted by

uHt := u0|tu1|t · · ·uH−1|t. Given uHt and xt, we denote the predicted H-step system

response by xHt (xt, u
H
t , w

H
t ) := x1|tx2|t · · ·xH|t, where xk+1|t = f(xk|t, uk|t, wk|t), k =

0, 1, · · · , H − 1, x0|t = xt, and wHt := w0|tw1|t · · ·wH−1|t. At each time, uHt is found

such that it optimizes a cost function J
(
xHt , u

H
t

)
, J : XH × UH → R, subject to

system constraints. When uHt is computed, only the first control action u0|t is applied

to the system and given the next state, the optimization problem is resolved for uHt+1.

Thus, the implementation is closed-loop.

Problem 6 (Robust STL MPC). Given a bounded STL formula ϕ, an initial condition

x0, a planning horizon H and a cost function J
(
xHt , u

H
t

)
, find a control policy such

that ut = µ(x0, · · · , xt) = uopt
0|t , where uH,opt

t := uopt
0|t · · ·u

opt
H−1|t, and uH,opt is the

2The MPC horizon H should not be confused with the STL horizon hϕ.
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following minimizer:

arg minuHt max
wHt

J
(
xHt (xt, u

H
t , w

H
t ), uHt

)
,

s.t. x(x0, µ,w)[0] |= G[0,∞]ϕ, ∀w ∈ Wω,
xk+1 = f(xk, uk, wk),∀k ∈ N.

(5.6)

The primary challenge of robust STL MPC is guaranteeing the satisfaction of

the global STL formula while the controls are planned in a receding horizon manner

(see the constraints in (5.6)). Our approach takes the advantage of the results from

Problem 5 to design appropriate terminal sets for the MPC algorithm such that the

generated runs are guaranteed to satisfy the global STL specification while the online

control decisions are computed (sub)optimally. Due to the temporal logic constraints,

our MPC setup differs from the conventional one. The details are explained in Sec.

5.4.

For computational purposes, we assume that J is a piecewise affine function of

the state and controls. Moreover, the cost functions in our applications are non-

decreasing with respect to the state in the sense that x′k|t � xk|t, k = 1, 2, · · · , H ⇒

J(xH′t , u
H
t ) � J(xHt , u

H
t ),∀uHt ∈ UH . As it will become clear later in the chapter, we

will exploit this property to simplify the worst-case optimization problem in (5.6) to

an optimization problem for the maximal system.

As mentioned earlier, a natural objective is maximizing STL robustness score. It

follows from the linearity of the predicates in (5.3) and max and min operators in

Definition 3 that STL robustness score is a piecewise affine function of finite-length

signals. We can also consider optimizing a weighted combination of STL robustness

score and a given cost function. We use this cost formulation for traffic application

in Sec. 5.5.
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5.2 Finite Horizon Semantics

In this section, we explain the solution to Problem 4. First, we exploit monotonicity

to characterize the properties of the solutions. Next, we explain how to synthesize

controls using a mixed integer linear programming (MILP) solver.

Lemma 2. Consider runs x and x′ and an STL formula ϕ. If for some t, t′, we have

x′[t′ : t′ + hϕ] � x[t : t+ hϕ], then x[t] |= ϕ implies x′[t′] |= ϕ.

Proof. Since all predicates denote lower-sets in the form of (5.3), we have x′t′ � xt ⇒

aTπx
′
t′ ≤ aTπxt, x[t] |= π ⇒ x′[t] |= π. Thus, all predicates that were true by the

valuations in x remain true for x′. The negation-free semantics implies that without

falsifying any predicate, a formula can not be falsified. Therefore, x[t] |= ϕ implies

x′[t′] |= ϕ

The largest set of admissible initial conditions is defined as:

Xmax
0 :=

{
x0 ∈ X

∣∣∣∃µ s.t. x(x0, µ,w) |= ϕ,∀w ∈ Wω
}
.

The set Xmax
0 is a union of polyhedra. Finding the half-space representation of all

polyhedral sets in Xmax
0 may not be possible for high dimensions. Therefore, we find

a half-space representation for a subset of Xmax
0 . The following result states how to

check whether x0 ∈ Xmax
0 .

Theorem 5. We have x0 ∈ Xmax
0 if and only if there exists an open-loop control

sequence

uol,x0

0 uol,x0

1 · · ·uol,x0

hϕ−1

such that xol,x0 [0 : hϕ] |= ϕ, where xol,x0 [0 : hϕ] = xol,x0

0 xol1 · · ·x
ol,x0

hϕ , and xol,x0

k+1 =

f ∗(xol,x0

k , uol,x0

k ), k = 0, · · · , hϕ − 1, xol,x0

0 = x0.
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Proof. (Necessity) Satisfaction of ϕ with w ∈ Wω requires at least one satisfying

run for the maximal system, hence a corresponding control sequence exists. Denote

it by uol,x0

0 uol,x0

1 · · · , uol,x0

hϕ−1. (Sufficiency) Consider any run generated by the original

system xk+1 = f(xk, u
ol,x0

k , wk). We prove that xk � xol,x0

k , k = 0, 1, · · · , hϕ, by

induction over k. The base case x0 � xol,x0

0 is trivial (x0 = xol,x0

0 ). The inductive

step is verified from monotonicity: xk+1 = f(xk, u
ol,x0

k , wk) � f ∗(xk0, u
k
k) = xol,x0

k+1 .

Therefore, x[0 : hϕ] � xol,x0 [0 : hϕ], ∀w[0 : hϕ−1] ∈ Whϕ . It follows from Lemma 2

that x[0 : hϕ] |= ϕ,∀w[0 : hϕ−1] ∈ Whϕ .

Corollary 1. The set Xmax
0 is a lower-set.

Proof. Consider any x′0 ∈ L(x0), x0 ∈ Xmax
0 . Let x′k+1 = f(x′k, u

ol,x0

k , wk), k =

0, 1, · · · , hϕ − 1. It follows from monotonicity that x′k � xol,x0

k , k = 0, 1, · · · , hϕ,

∀w[0 : hϕ−1] ∈ Whϕ . By the virtue of Lemma 2, x′[0 : hϕ] � xx0,ol[0 : hϕ]. There-

fore, we have ∀x0 ∈ Xmax
0 , x′0 ∈ L(x0) ⇒ x′0 ∈ Xmax

0 , which indicates Xmax
0 is a

lower-set.

Corollary 2. If x0 ∈ Xmax
0 and µol is the following open-loop control policy

µolt (x0) = uol,x0
t , t = 0, 1, · · · , hϕ − 1,

then x(x′0, µ,w)[0 : hϕ] |= ϕ,∀w ∈ Whϕ ,∀x′0 ∈ L(x0).

Proof. Follows from the proof of Corollary 1.

The system equations are brought into mixed-integer linear constraints by trans-

forming system (5.1) into its MLD form. As mentioned in Chapter 2, any PWA

system can be transformed into an MLD.
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Finally, the set of constraints in Theorem 5 can be cast as:


xol,x0

0 = x0, Initial condition;

xol,x0

k+1 = f ∗(xol,x0

k , uol,x0

k ), System constraints;

zπk = (aTπx
ol,x0

k ≤ bπ), Predicates;
zϕ0 = 1, ρ ≥ 0, STL satisfaction.

(5.7)

Checking the satisfaction of the set of constraints in (5.7) can be formulated as a

MILP feasibility problem. For a fixed initial condition x0, the feasibility of the MILP

indicates whether x0 ∈ Xmax
o . An explicit representation of Xmax

o requires variable

elimination from (5.7), which is computationally intractable for a large MILP. Al-

ternatively, we can set x0 as a free variable while maximizing a cost function (e.g.

norm of x0) such that a large L(x0) is obtained. Another natural candidate is max-

imizing ρ(xol,x0 , ϕ, 0). It is worth to note that by finding a set of distinct initial

conditions and taking the union of all L(x0), we are able to find a representation for

an under-approximation of Xmax
o .

MILPs are NP-complete, but powerful off-the-shelf solvers exist. The complexity

of solving (5.7) grows exponentially with respect to the number of binary variables

and polynomially with respect to the number of continuos variables. The number of

binary variables in our framework is O (hϕ(nπ +mb + qb + nδ)) - nπ is the number of

predicates - and the number of continuous variables is O (hϕ(n+mr + qr + nr)). In

other words, the exponential growth builds upon the intricacy of the specification and

the number of modes demonstrated by the hybrid nature of the system. However,

the complexity is polynomial with respect to the dimension of the state.

Example 8. Consider the following switched system:

x+ = eAuτx+ A−1
u (I − e−Auτ )w,
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where x = (x[1], x[2])
T ∈ R2

+, u ∈ U is the control input (switch), U = {1, 2}, and

A1 =

(
1 1
1 −5

)
, A2 =

(
−8 1
1 2

)
.

The (additive) disturbance w is bounded to L(w∗), where w∗ = (1.5, 1)T and τ =

0.1. This system is the discrete-time version of ẋ = Aux + w with sample time

τ . Both matrices are Metzler (all off-diagonal terms are non-negative hence all the

elements of its exponential are positive) and non-Hurwitz hence constant input results

in unbounded trajectories. The system is desired to satisfy the following STL formula:

ϕ =
10∨
T=0

(
F[0,T ]p1 ∧ F{T}p2

)
,

where p1 =
(
(x[1] ≤ 1) ∧ (x[2] ≤ 5)

)
and p2 =

(
(x[1] ≤ 5) ∧ (x[2] ≤ 1)

)
. In plain En-

glish, ϕ states that “within 10 time units, the trajectory visits the box characterized

by p1 first and then the box corresponding to p2” (see Fig. 5·1). We transformed

this system into its MLD form. We formulated the constraints in (5.7) as a MILP

and set the cost function to maximize ‖x0‖∞ and used the Gurobi 3 MILP solver.

The solution was obtained in less than 0.05 seconds on a 3GHz Dual Core MacBook

Pro. We obtained x0 = (2.82 2.82)T and the following open-loop control sequence:

1 2 1 2 2 1 1 1 1 1. By applying this control sequence, we sampled a trajectory of

the original system f with values of w drawn from a uniform distribution over L(w∗).

Both the trajectories of f and f ∗ satisfy the specification. The results are shown in

Fig. 5·1.

3www.gurobi.com
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Figure 5·1: Example 8: [Left] The trajectory of the maximal system
f ∗ which satisfies the specification. [Right] For the same controls, the
trajectory of the original system f with w drawn from an uniform
distribution over L(w∗).

5.3 Infinite Horizon Semantics

In this section, we provide a solution to Problem 5. We show that the infinite-time

property in (6.9) can be guaranteed using repetitive control sequences. First, we con-

sider global specifications and extend the results from our previous work [Sadraddini

and Belta, 2016b] in Sec. 5.3.1. Next, we show how to find controls for bounded-

global STL formulas (Problem 5) in Sec. 5.3.2. Solution completeness is discussed in

Sec. 5.3.3.

5.3.1 Global specifications: s-sequences and invariance

Consider the global specification G[0,∞]ϕ, where ϕ is a bounded formula. We introduce

some additional notation.

Definition 21. Given a bounded STL formula ϕ over predicates in the form (5.3), the
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language realization set (LRS) [Sadraddini and Belta, 2016a] is:

Lϕ :=
{
x0x1 · · ·xhϕ ∈ X hϕ

∣∣x0x1 · · ·xhϕ |= ϕ
}
. (5.8)

Proposition 1. The set Lϕ is a lower-set.

Proof. For all x0x1 · · ·xhϕ ∈ Lϕ and x′0x
′
1 · · ·x′hϕ � x0x1 · · ·xhϕ , it follows from

Lemma 2 that x′0x
′
1 · · ·x′hϕ |= ϕ. Thus, x′0x

′
1 · · ·x′hϕ ∈ LRS(ϕ) hence LRS(ϕ) is

a lower set.

It follows from the semantics of global operator that x |= G[0,∞]ϕ is equivalent to

x[t : t+ hϕ] ∈ Lϕ,∀t ∈ N.

Definition 22. A set ΩLϕ ⊆ Lϕ is a robust control invariant (RCI) set if:

∀ x0x1 · · ·xhϕ ∈ ΩLϕ ,∃u ∈ U , s.t.
x1x2 · · ·xhϕf(xhϕ , u, w) ∈ ΩLϕ ,∀w ∈ W .

(5.9)

Satisfaction of G[0,∞]ϕ is accomplished by finding a RCI set in Lϕ. Note that

unlike traditional definitions of RCI sets (e.g., [Blanchini, 1999]), where the set is

defined in the state-space X , our RCI set is defined in an augmented form of the

state-space X hϕ . The language realization set can also be interpreted as the “safe”

set in (hϕ + 1)-length trajectory space. The maximal RCI set inside Lϕ provides a

complete solution to the set-invariance problem. The computation of maximal RCI

set requires implementing an iterative fixed-point algorithm which is computationally

intensive for MLD systems and non-convex sets (see [Kerrigan, 2000, Raković et al.,

2004] for discussion). We use monotonicity to provide an alternative approach. The

following result is a more general version of the one in [Sadraddini and Belta, 2016b].

Theorem 6. Given a bounded formula ϕ, if there exists xs[0 : hϕ] ∈ Lϕ, and a sequence
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of controls: us0, · · · , usT−1 - where T is a positive integer determining the length of the

sequence - such that:

1. xs[k : k + hϕ] ∈ Lϕ, k = 0, 1, · · · , T , where xshϕ+k+1 = f ∗(xshϕ+k, u
s
k),

2. xs[T : T + hϕ] � xs[0 : hϕ],

then the following set is a RCI set in Lϕ:

ΩLϕ :=
T−1⋃
k=0

L(xs[k : k + hϕ]). (5.10)

Proof. For any x′0x
′
1 · · ·x′hϕ ∈ Ωϕ, there exists i ∈ {0, 1 · · · , T − 1} such that

x′0x
′
1 · · ·x′hϕ ∈ L(xs[i : i+ hϕ]).

On one hand, we have xsi+1 · · ·xsi+hϕf ∗(xsi+hϕ , usi ) ∈ ΩLϕ . On the other hand, we have

x′1 � xsi+1, · · · , x′hϕ � xsi+hϕ . By applying usi , monotonicity implies

f(x′hϕ , u
s
i , w) � f ∗(xsi+hϕ , u

s
i ) = xsi+1+hϕ ,∀w ∈ W

⇒ x′1x
′
2 · · ·x′hϕf(x′hϕ , u

s
i , w) ∈

L
(
xsi+1x

s
i+2 · · ·xsi+1+hϕ)

)
,∀w ∈ W .

And the proof is complete from the fact that xsi+1 · · ·xsi+1+hϕ ∈ ΩLϕ for all i ∈

{0, 1 · · · , T − 1}.

Corollary 3. Let the conditions in Theorem 6 hold and x[t0 : t0 + hϕ] ∈ L(xs[0 : hϕ])

for some t0 ∈ N. Consider the following control sequence starting from time t0 + hϕ:

us :=
(
us0u

s
1 · · ·usT−1

)ω
, (5.11)

i.e., ust = usrem(t−t0−hϕ,T ), t ≥ t0 + hϕ. Let xk+1 = f ∗(xk, uk), k = t0 + hϕ, · · · . Then we
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have x[t : t+ hϕ] ∈ ΩLϕ , ∀t ≥ t0.

Proof. We prove by induction that x[t : t+ hϕ] ∈ L(xs[rem(t− t0, T ) : rem(t− t0) +

hϕ]),∀t ≥ t0. The base case for t = t0 is true. In order to prove the inductive step

x[t + 1 : t + 1 + hϕ] ∈ L(xs[rem(t + 1− t0, T ) : rem(t + 1− t0, T ) + hϕ]), we need to

prove that xt+k+1 � xsrem(t+1−t0,T )+k, k = 0, · · · , hϕ, for which we need to only prove

the case for k = hϕ as previous inequalities are already assumed by induction. We

show xt+hϕ+1 � xsrem(t+1−t0,T )+hϕ through monotonicity and the induction assumption

that xt+hϕ � xsrem(t−t0,T )+hϕ :

xt+hϕ+1 = f ∗(xt+hϕ , u
s
rem(t−t0,T ))

� f ∗(xsrem(t−t0,T )+hϕ , u
s
rem(t−t0,T ))

= xsrem(t−t0,T )+1+hϕ � xsrem(t+1−t0,T )+hϕ .

Note that xsT+hϕ � xshϕ . The “�” in the last line can be replaced by “=” when

rem(t− t0, T ) + 1 6= T .

We refer to the repetitive sequence of controls in (5.11) as an s-sequence. An

s-sequence is an invariance inducing open-loop control policy. Once the latest hϕ + 1-

length of system state are brought into ΩLϕ , an s-sequence keeps the hϕ + 1-length

trajectory of the system in ΩLϕ for all subsequent times.

The computation of an s-sequence requires solving an MILP for xs[hϕ : T ] |=

G[0,T ]ϕ (an instance of Problem 4) with an additional set of constraints in xs[0 :

hϕ] |= ϕ (again, an instance of Problem 4, but without the dynamical constraints.

In other words, xs[0 : hϕ] does not need to be a trajectory of the maximal system),

and xs[T : T + hϕ] � xs[0 : hϕ] (linear constraints). We are usually interested in the

shortest s-sequence since its computation requires the smallest MILP. Algorithmically,

we start from T = 1 and implement T ← T + 1 until the MILP formulating the
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Figure 5·2: Example 9: [Left] The trajectory satisfying the conditions
of s-sequences. [Right] The corresponding robust control invariant set
inside S.

conditions in Theorem 6 becomes feasible and an s-sequence is found. As it will be

implied from results in Sec. 5.3.3, existence of an s-sequence is almost necessary for

existence of a RCI set.

Example 9. Consider the system in Example 8. We wish to keep the trajectory in the

set characterized by p1 ∨ p2, i.e., S = L
(
(1, 5)T )

)
∪ L

(
(5, 1)T )

)
. Note that this set

is non-convex. We set the cost function to maximize ‖x0‖1. The shortest s-sequence

has T = 5 and is: (2 1 2 1 1)ω. The resulting trajectory satisfying the definition of

s-sequence is shown in Fig. 5·2 (a). The corresponding robust control invariant set

is shown in Fig. 5·2. (b) (cyan region), which is characterized by the xs0, x
s
1, · · · , xs4

(red dots) that lie inside S (green region). Note that the [0, 2]× [0, 2] portion of the

coordinates in Fig. 5·1 is shown here for a clearer representation of the details.

5.3.2 Bounded-global specifications: φ-sequences

Now we consider general bounded-global formulas - as in Problem 5 - and generalize

the paradigm used for s-sequences. We provide the key result of this section.
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Theorem 7. Given a bounded-global STL formula φ = ϕb ∧ G[∆,∞]ϕg, an initial

condition x0, a control sequence uφ0 · · ·u
φ
∆+T+hϕg−1, where T is a positive integer, and

a non-negative integer T0 < T , let the following conditions hold:

1. xφ[0 : ∆ + T + hϕg ] |= ϕb ∧G[∆,∆+T ]ϕg,

2. xφ[∆ + T : ∆ + T + hϕg ] � xφ[∆ + T0 : ∆ + T0 + hϕg ];

where xφk+1 = f ∗(xφk , u
φ
k), k ∈ [0,∆ + T + hϕg − 1], xφ0 = x0. Let µol be the open-loop

control policy corresponding to the following control sequence:

uφ := uφ0 · · ·u
φ
∆+T0+hϕg−1

(
uφ∆+T0+hϕg · · ·u

φ
∆+T+hϕg−1

)ω
, (5.12)

Then x(x′0, µ
ol,w) |= φ,∀w ∈ Wω,∀x′0 ∈ L(x0). Moreover, the following set is a RCI

set in Lϕg :

ΩLϕg :=

T−T0−1⋃
i=0

L(xφ[∆ + T0 + i : ∆ + T0 + hϕg + i]). (5.13)

Proof. We need to prove that x(xφ0 , µ
ol,w∗) |= φ, where w∗ = (w∗)ω. The fact that

x(x′0, µ
ol,w)[0] |= φ,∀x′0 ∈ L(x0),∀w ∈ Wω, follows from monotonicity and Lemma

2. The fact that ΩLϕg is a RCI set follows from Theorem 6 as (5.10) is obtained from

replacing ∆ = T0 = 0 in (5.13). It follows that
(
uφ∆+T0+hϕg · · ·u

φ
∆+T+hϕg−1

)ω
is an

s-sequence. For all t ≥ ∆ + T + hϕg , let

xφt+1 = f ∗(xφt , u
φ
∆+T0+hϕg+rem(t−∆−T0−hϕg ,T−T0)). (5.14)

Using Corollary 3, we have xφ[k+ ∆ + T0 : k+ ∆ + T0 + hϕg ] ∈ Lϕg ,∀k ∈ N, and the

proof is complete.
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We refer to the sequence of controls in (5.12) as a φ-sequence. The computation of

a φ-sequence requires solving an MILP for xφ[0 : ∆ +T +hϕg ] |= ϕb∧G[∆,∆+T ]ϕg (an

instance of Problem 4) with an additional set of constraints in xφ[∆+T : ∆+T+hϕg ] �

xφ[∆ + T0 : ∆ + T0 + hϕg ] (linear constraints). Thus, similar to s-sequecnes, the

computation of a φ-sequence is based on feasibility checking of a MILP. We have

two parameters T and T0 < T to search over. We start from T = 1 and implement

T ← T +1, while checking for all T0 < T , until the corresponding MILP gets feasible.

In Sec. 5.3.3, we discuss the necessity of existence of a feasible solution for some

T0, T .

Another interpretation of a φ-sequence is a sequence that consists of a initialization

segment of length ∆+hϕg to bring the latest hϕg states of the system into ΩLϕg ⊆ Lϕg

and a repetitive segment of length T to stay in ΩLϕg . The repetitive segment is an s-

sequence. Since control inputs eventually becoming periodic, the long-term behavior

is expected to demonstrate periodicity, which leads to the following result based on

Theorem 7.

Corollary 4. The ω-limit set of the run given by (5.14) is non-empty and corresponds

to the following periodical orbit:

(
xφ,∞0 xφ,∞1 · · ·xφ,∞T−T0−1

)ω
, (5.15)

where xφ,∞k := limc→∞ x
φ
k+∆+T0+c(T−T0), k = 0, · · · , T − T0 − 1.

Proof. We show that xφt � xφt+T−T0
,∀t ≥ ∆ + T0. Similar to the proof of Corollary 3,

we use induction. The base case for t = ∆ + T0 is already in the second condition in



71

Theorem 7. The inductive step is proven as follows:

xφt+1+T−T0
= f ∗(xφt+T−T0

, uT−T0+t) � f ∗(xφt , ut) = xφt+1,

where from (5.12) we have

ut+T−T0 = ut = uφt+∆+T0+hϕg+rem(t−∆−T0−hϕg ,T−T0).

Thus, each component of the sequence xφ∆+T0+kx
φ
∆+T+kx

φ
∆+2T−T0+k · · · , k = 0, · · · , T−

T0, is monotonically decreasing. Monotone convergence theorem [Sutherland, 1975]

explains that a lower-bounded monotonically decreasing sequence converges (in this

case, all values are lower-bounded by zero). Thus, limc→∞ x
φ
∆+T0+k+c(T−T0), k =

0, · · · , T − T0, exists and the proof is complete.

Example 10. Consider the system in Example 8. We wish to satisfy

φ = F[0,5]p1 ∧ G[5,∞)

(
F[0,6]p1 ∧ F[0,6]p2

)
.

The specification is in form in (5.5) with hϕb = ∆ = 5, hϕg = 6. This specification

requires that p1 is visited at least once until t = 5 and, afterwards, p1 and p2 are

persistently visited while the maximum time between two subsequent visits is not

greater than 6. We find a φ-sequence solving a MILP for T = 7, T0 = 0, while

maximizing ‖x0‖1. The obtained φ-sequence is uφ = 2 2 2 2 1 2 1 1 1 1 2 (2 2 1 1 1 1 2)ω

for x0 = (12.4, 0)T . The first ∆ + T + hϕg + 1 = 5 + 7 + 6 + 1 = 19 time points of

the trajectory of the maximal system f ∗ satisfying the conditions in Theorem 7 is

shown in Fig. 5·3 [Left]. A sample trajectory of f with values of w chosen uniformly

from W is also shown. Both trajectories satisfy φ. The limit-set of f ∗, which is a
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Figure 5·3: Example 10: [Left] The first 19 points of the trajectory
of the maximal system f ∗ that satisfy the conditions in Theorem 7. A
sample trajectory of f is also shown. [Right] The ω-limit set (red dots)
of f ∗ is a 7-periodic orbit.

7-periodical orbit, is shown in Fig. 5·3 [Right].

5.3.3 Necessity of Open-loop Strategies

We showed that if there exists an initial condition and a finite length control sequence

such that the statements in Theorem 6 hold, an open-loop control sequence is sufficient

for satisfying of a bounded-global formula, as was formulated in Problem 5. In this

section, we address the necessity conditions.

We show that the existence of open-loop control strategies for satisfying a bounded-

global specifications is almost necessary in the sense that if a φ-sequence is not found

using Theorem 7 for large values of T , then it is almost certain that no correct con-

trol policy (including feedback policies) exists, or, if exists any, it is fragile in the

sense that a slight increase in the effect of the disturbances makes the policy invalid.

We characterize the necessity conditions based on hypothetical perturbations in the

disturbance set.

Theorem 8. Suppose system (5.1) is strongly monotone with respect to the maximal
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disturbance in the sense that for all ε > 0, there exists a perturbed disturbance set

Wp with maximal disturbance w∗p such that

∀x ∈ X , ∀u ∈ U , f(x, u, w∗) + 1nε � f(x, u, w∗p). (5.16)

Consider the bounded-global formula φ = ϕb∧G[∆,∞]ϕ. Given ε > 0, the disturbance

set is altered to Wp such that (5.16) holds. If there exists a control policy µ and an

initial condition x0 such that x(x0, µ,wp) |= φ,∀wp ∈ Wω
p , then there exists at least

one open-loop control policy µol in the form of a φ-sequence in (5.12) for the original

system such that

T ≤ A/εn(hϕg+1), (5.17)

where A is a constant depending on Lϕg .

Proof. Given a bounded set C ⊂ Rn(hϕ+1), we define the diameter d(C) := inf{d|s1 �

s2 +d1n(hϕ+1),∀s1, s2 ∈ C} (e.g., the diameter of an axis-aligned hyper-box is equal to

the length of its largest side). Consider a partition of Lϕ by a finite number of cells,

where the diameter of each cell is less than ε. The maximum number of cells required

for such a partition is A/εn(hϕg+1), where A is a constant dependent on the shape and

volume of Lϕg . A conservative upper bound on A can be given as follows. Define

a∗ ∈ R+ as

arg mina/ε∈N

{
x[0 : hϕg ] � a1n[0 : hϕg ],∀x[0 : hϕg ] ∈ Lϕg

}
.

Since Lϕg is bounded and closed, a∗ exists. We have Lϕg ⊆ L(a∗1n(hϕg+1)). Let

A be a∗n(hϕg+1) - the volume of L(a∗1n(hϕg+1)), which is a hyper-box. Partition

L(a∗1n(hϕg+1)) into N := A/εn(hϕg+1) number of equally sized cubic cells with side
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length of ε. Such a partition also partitions Lϕg to at most N number of cells where

the diameter of each cell is not greater than ε.

Since there exists µ such that x(x0, µ,wp) |= φ,∀wp ∈ Wω
p , then there exist at

least one run satisfying φ for system xk+1 = f(xk, uk, w
∗
p). Let x0, · · · , x∆+hϕg+N be

the first ∆+hϕg +N+1 time points of a such a run. We have x[k : k+hϕg ] ∈ Lϕg , k =

∆, · · · ,∆+N . Consider the sequence x[∆ : ∆+hϕg ]x[∆+1 : ∆+1+hϕg ] · · ·x[∆+N :

∆ +N + hϕg ]. Consider a partition of Lϕg with cells that for all cells the diameter is

less than ε. By the virtue of pigeonhole principle, there exists a cell such that contains

at least two time points x[k1 : k1 + hϕg ] and x[k2 : k2 + hϕg ], ∆ ≤ k1 ≤ k2 ≤ ∆ +N .

From the assumption on the diameter of the cells we have

x[k2 : k2 + hϕg ] � x[k1 : k1 + hϕg ] + ε1n[0 : hϕg ]. (5.18)

Now consider system x′k+1 = f(x′k, uk, w
∗) - the original maximal system - with

x′k1+hϕg = xk1+hϕg . We prove that

x′k + 1nε ≤ xk,∀k > k1 + hϕg . (5.19)

We use induction. The base case for k = k1 + hϕg + 1 is verified using (5.16):

x′k1+1+hϕg + 1nε = f(x′k1+hϕg , uk1+hϕg , w
∗) + 1nε

≤ f(x′k1+hϕg , uk1+hϕg , w
∗
p)

= xk1+1+hϕg .

The inductive step is verified using monotonicity and (5.16):

x′k+1+hϕg + 1nε = f(x′k+hϕg , uk+hϕg , w
∗) + 1nε

≤ f(x′k+hϕg , uk+hϕg , w
∗
p)

≤ f(xk+hϕg , uk+hϕg , w
∗
p) = xk+1+hϕg .
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It immediately follows from (5.19) that

x′[k2 : k2 + hϕg ] + ε1n[0 : hϕg ] ≤ x[k2 : k2 + hϕg ]. (5.20)

Since the lefthand of (5.18) is the righthand of (5.20), we have:

x′[k2 : k2 + hϕg ] ≤ x[k1 : k1 + hϕg ]. (5.21)

This is reminiscent of the conditions in Theorem 6. Now by defining x′k := xk, k =

k1, · · · , k1 + hϕg − 1, we conclude that

Ω′Lϕg :=

k2−1⋃
k=k1

L(x′[k : k + hϕ])

is a RCI set for system with adversarial disturbance set W and (uk1 · · ·uk2+hϕg−1)ω is

an s-sequence.

Now, once again, consider the original system x′k+1 = f(x′k, uk, w
∗) with x′0 =

x0. Monotonicity implies x′[0 : k1 + hϕg ] ≤ x[0 : k1 + hϕg ]. Thus, by applying

u0, · · · , uk1+hϕg−1 and using Lemma 2, we have x′[0 : k1 + hϕg ] |= ϕb ∧ G[∆,k1]ϕg.

Corollary 3 implies x′[k1 + hϕg ] |= G[0,∞)ϕg if (uk1 , · · · , uk2−1)ω is applied start-

ing from time k1. Finally, monotonicity and Lemma 2 immediately indicate that

x(x′′0, µ
ol,w) |= φ,∀x′′0 ∈ L(x0),∀w ∈ Wω, where µol is the following open-loop con-

trol strategy producing the following control sequence:

u0 · · ·uk1−1(uk1 · · ·uk2+hϕg−1)ω,

which is in form of (5.12) with k1 = ∆ +T0 +hϕg and k2 = ∆ +T . Since k2 ≤ ∆ +N ,

we also have T ≤ N,N = A/εn(hϕg+1), and the proof is complete.
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Corollary 5. Suppose that for all T ≤ Tmax, T0 < T , there does not exist an initial

condition and a control sequence such that the conditions in Theorem 7 hold. Then

there does not exist any solution to Problem 5 given that the maximal disturbance is

w∗p such that (5.16) holds with ε > n(hϕg+1)
√
Tmax.

The relation between the fragility in Theorem 8 and the length of the φ-sequence

suggests that by performing the search for longer φ-sequences (which are compu-

tationally more difficult), the bound for fragility becomes smaller, implying that a

correct control policy (if exists) is close to the limits (i.e., robustness score is close to

zero, or the constraints are barely satisfied in the case with maximal disturbance). In

practice, the bounds in Theorem 8 are very conservative and one may desire to find

tighter bounds for specific applications.

Example 11. Consider Example 9. Suppose that there does not exist an s-sequence

of length smaller than 144 with maximal disturbance w∗. The constant A (area

in this 2D case, see proof of Theorem 8) of region corresponding to p1 ∨ p2 is 9.

Therefore, S can be partitioned into 144 equally sized square cells with side length

0.25. Note that we have ε2 ≥ 9/T . Since the disturbances are additive, it follows that

if A−1
u (I − e−Aut)(w∗p − w∗) > (0.25, 0.25)T , u = 1, 2, then there does not exist any

control strategy µ and x0 ∈ Rn
+ such that x(x0, µ,wp) |= G[0,∞](x ∈ S),∀wp ∈ Wω

p .

5.4 Model Predictive Control

In this section, we provide a solution to Problem 6. We assume full knowledge of

the history of state. As mentioned in Sec. 8.1, the cost function J is assumed to

be non-decreasing with respect to the state values hence the system constraints are
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replaced with those of the maximal system. First, we explain the MPC setup for

global STL formulas. Next, we prove that the proposed framework is guaranteed to

generate runs that satisfy the global STL specification (6.9).

Let t ≥ hϕ− 1. The case of t < hϕ− 1 is explained later. Given planning horizon

H, the states that are predictable at time t using controls in uHt are x1|t, x2|t, · · · , xH|t.

Given predictions x1|t, x2|t, · · · , xH|t, we need to enforce x[t− hϕ + 1, t+H] |= G[0,H−1]ϕ

at time t. Notice that

x|t[t− hϕ + 1, t+H] := xt−hϕ+1 · · ·xtx1|t · · ·xH|t, (5.22)

i.e., the first hϕ time points are actual values, the rest are predictions. Also, note

that the values in x[τ : τ + hϕ] are independent of the values in xHt for τ ≤ t − hϕ

and are not fully available for τ > t + H − hϕ. Thus, [t− hϕ + 1, t + H − hϕ] is the

time window for imposing constraints at time t [Sadraddini and Belta, 2015].

The MPC optimization problem is initially written as (we do not use it for control

synthesis as explained shortly):

minimize J
(
xHt , u

H
t

)
,

s.t. xk+1|t = f ∗(xk|t, uk|t), k = 0, · · · , H − 1,
x|t[t− hϕ + 1, t+H] |= G[0,H−1]ϕ.

(5.23)

The set of constraints in (5.23) requires the knowledge of xt−hϕ+1xt−hϕ+2 · · · xt. Thus,

the proposed control policy requires a finite memory for the history of last hϕ states.

As it will be shown in Proposition 2, persistent feasibility of the constraints in (5.23)

leads to fulfilling G[0,∞]ϕ. However, persistent feasibility of the MPC setup in (5.23)

is not guaranteed. We address this issue for the remainder of this section.

Definition 23. An MPC strategy is recursively feasible if, for all t ∈ N, the control at
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time t is selected such that the MPC optimization problem at t+ 1 becomes feasible.

Our goal is to modify (5.23) such that it becomes recursively feasible. It is known

that adding a (the maximal) RCI set acting as a terminal constraint is sufficient (and

necessary) to guarantee recursive feasibility [Kerrigan and Maciejowski, 2001]. We

add the terminal constraint x[t+H − hϕ : t+H] ∈ ΩLϕ to (5.23) to obtain:

uH,optt = arg min
uHt ∈UH

J
(
xHt , u

H
t

)
,

s.t. xk+1|t = f ∗(xk|t, uk|t), k = 0, · · · , H − 1,
x|t[t− hϕ + 1, t+H] |= G[0,H−1]ϕ,
x|t[t+H − hϕ : t+H] ∈ ΩLϕ .

(5.24)

Proposition 2. Let µt(x0, · · · , xt) = µt(xt−hϕ+1, · · · , xt) = uH,opt0|t , where uH,opt =

uH,opt0|t · · ·uH,optH−1|t is given by (5.24). If the optimization problem (5.24) is feasible for

all t ≥ hϕ − 1, then x(x0, µ,w)[0] |= G[0,∞]ϕ, ∀w ∈ Wω.

Proof. We show that x(x0, µ,w)[0 : k+hϕ] |= G[0,k]ϕ,∀w ∈ W∗, ∀k ∈ N, using induc-

tion over k. Consider (5.24) for t = k + hϕ − 1 for any k ∈ N. The second constraint

in (5.24) requires x|t[k, k + hϕ] |= ϕ, or equivalently, xk · · ·xk+hϕ−1x1|k+hϕ−1 |= ϕ.

By applying uopt0|t , monotonicity implies xk+hϕ = f(xk+hϕ−1, u
opt
0|t , w) � x1|k+hϕ−1 =

f ∗(xk+hϕ−1, u
opt
0|t ), ∀w ∈ W . From Lemma 2 we have x[k : k+hϕ] |= ϕ. Thus, we have

shown x[k : k + hϕ] |= ϕ, ∀k ∈ N, and the proof is complete.

Proposition 3. The MPC strategy corresponding to (5.24) is recursively feasible.

Proof. Suppose uHt = u0|t · · ·uH−1|t and xHt = xt+1|t · · · , xt+H−1|t is a feasible solution

for (5.24) at time t. Since ΩLϕ is a RCI set, there exist ur ∈ U such that x|t[t+H + 1−

hϕ : t + H + 1] = xH−hϕ+1|txH−hϕ+2|t · · ·xH|tf(xH|t, u
r, w) ∈ ΩLϕ ,∀w ∈ W . Suppose

u0|t is applied to the system. We have xt+1 = f(xt, u0|t, w) � f ∗(xt, u0|t) = x1|t, ∀w ∈

W .



79

Now, we prove that the optimization problem at time t+ 1 is feasible by showing

that at least one feasible solution. Let uHt+1 = u1|tu2|t · · · , uH|tur. We already showed

that xt+1 = x0|t+1 � x1|t. By induction and using monotonicity, it follows that

xk|t+1 � xk+1|t, k =, 1, · · · , H − 2. Thus, we have xt−hϕ+2 · · ·xt+1x1|t+1 · · ·xH−1|t+1 �

xt−hϕ+2 · · ·x1|tx2|t · · ·xH|t, which using Lemma 2 establishes that

xt−hϕ+2 · · ·xt+1x1|t+1 · · ·xH−1|t+1 |= G[0,H−1]ϕ.

In order to complete the proof, it remains to show that

x[t+H + 1− hϕ : t+H + 1] = xH+1−hϕ|t · · ·xH|t+1 |= ϕ.

This follows from invariance. Note that xH|t+1 = f ∗(xH|t, u
r). Therefore, we have

xH+1−hϕ|t · · · · · ·xH|t+1 ∈ ΩLϕ , and since ΩLϕ ∈ Lϕ, we have xH+1−hϕ|t · · · · · ·xH|t+1 |=

ϕ, and the proof is complete.

The MPC optimization problem is also converted into a MILP problem. It is com-

putationally easier to solve the optimization problem in (5.24) by solving T MILPs:

uopt,Ht = arg min
uHt ∈UH ,i=0,··· ,T−1

J
(
xHt , u

H
t

)
,

s.t. xk+1|t = f ∗(xk|t, uk|t), k = 0, · · · , H − 1,
x|t[t− hϕ + 1, t+H] |= G[0,H−1]ϕ,
x|t[t+H − hϕ : t+H] ∈ L(xϕ,x0 [i : i+ hϕ]).

(5.25)

Note that all MILPs can be aggregated into a single large MILP in the expense of

additional constraints for capturing non-convexities of the terminal condition.

Finally, consider t < hϕ. In this case, we require H ≥ hϕ and replace the interval

[t − hϕ + 1, t + H − hϕ] with [0, t + H − hϕ] for t < hϕ in (5.25). For applications

where initialization is not important in long-term (like traffic management), a simpler
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approach is to initialize the MPC from t = hϕ−1 and assume all previous state values

are zero (hence all the past predicates are evaluated as true).

Remark 2. In our previous work on STL MPC of linear systems [Sadraddini and

Belta, 2015], we did not establish recursive feasibility. In order to recover from possi-

ble infeasibility issues, we proposed maximizing the STL robustness score (a negative

value) whenever the MPC optimization problem became infeasible. Although re-

cursive feasibility is guaranteed here, un-modeled disturbances and initial conditions

outside Xmax
0 can lead to infeasibility. The formalism in [Sadraddini and Belta, 2015]

can be used to recover from infeasibility with minimal violation of the specification.

5.5 Application to Traffic Management

In this section, we explain how to apply our methods to traffic management. First,

the model that we use for traffic networks is explained, which is similar to the one

in [Coogan et al., 2016b] but freeways are also modeled. Next, the monotonicity

properties of the model are discussed. We show that there exists a congestion-free set

in the state-space in which the traffic dynamics is monotone. Finally, a case study

on a mixed urban and freeway network is presented.

5.5.1 Model

The topology of the network is described by a directed graph (V ,L), where V is the

set of nodes and L is the set of edges. Each l ∈ L represents a one-way traffic link

from tail node τ(l) ∈ V ∪ ∅ to head node η(l) ∈ V , where τ(l) = ∅ stands for links

originating from outside of the network. We distinguish between three types of links

based on their control actuations: 1) Lr: road links actuated by traffic lights, 2)

Lo: freeway on-ramps actuated by ramp meters, 3) Lf : freeway segments which are



81

not directly controlled. Freeway off-ramps are treated the same way as the roads.

Uncontrolled roads are also treated the same as freeways. We have Lr ∪Lo∪Lf = L.

Remark 3. Some works, e.g. [Como et al., 2014], consider control over freeway links

by varying speed limits, which adds to the control power but requires the existence of

such a control architecture within the infrastructure. We do not consider this type of

control actuation in this chapter but it can easily be incorporated into our model by

modeling freeways links the same way as on-ramps, where the speed limit becomes

analogous to the ramp meter input.

The number of vehicles on link l at time t is represented by x[l],t ∈ [0, cl], which

is assumed to be a continuous variable, and cl is the capacity of l. In other words,

vehicular movements are treated as fluid-like flow in our model. The number of

vehicles that are able to flow out of l in one time step, if link l is actuated, is:

q[l],t := min

{
x[l],t, q̄l, min

{l′|τ(l′)=η(l)}

αl:l′

βl:l′
(cl′ − x[l′],t)

}
, (5.26)

where q̄l is the maximum outflow of link l in one time step, which is physically

related to the speed of the vehicles. The last argument in the minimizer determines

the minimum supply available in the downstream links of l, where αl:l′ ∈ [0, 1] is the

capacity ratio of link l′ available to vehicles arriving from link l (typically portion of

the lanes), βl:l′ ∈ [0, 1] is the ratio of the vehicles in l that flow into l′ (turning ratio).

For simplicity, we assume capacity ratios and turning ratios are constants. System

state is represented by x ∈ Rn
+ : {x[l]}l∈L, where n is the number of the links in the

network. The state space is X :=
∏

l∈L[0, cl].

A schematic diagram illustrating the behavior of q[l] with respect to the state

variables x[l], x[l′]- which is known as the fundamental diagram in the traffic literature
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[Geroliminis and Daganzo, 2008] - is shown in Fig. 5·4. The link flow drops if one

(or more) of its downstream links do not have enough capacity to accommodate the

incoming flow. In this case (when the last argument in (5.26) is the minimizer), we

say the traffic flow is congested. Otherwise, the traffic flow is free. This motivates the

following definition:

Definition 24. The congestion-free set, denoted by Π, is defined as the following region

in the state space:

Π :=
{

x ∈ X
∣∣∣min{x[l], q̄l} ≤ αl:l′

βl:l′
(cl′ − x[l′]),

∀l, l′ ∈ L, τ(l′) = η(l)
}
.

(5.27)

Proposition 4. The congestion-free set is a lower-set.

Proof. Consider x ∈ Π and any x′ ∈ L(x). For all l, l′ ∈ L, τ(l′) = η(l), we have

min{x′l, q̄l} ≤ min{x[l], q̄l} and (cl′ − x[l]′) ≤ (cl′ − x′l′). Therefore, min{x′l, q̄l} ≤
αl:l′
βl:l′

(cl′ − x′l′). Thus x′ ∈ Π, which indicates Π is a lower-set.

Note that Π is, in general, non-convex. The predicate (x ∈ Π) can be written as

a Boolean logic formula over predicates in the form of (5.3) as:

∧
l,l′∈L,τ(l′)=η(l)

((
(x[l] ≤ q̄l) ∧ (x[l] +

αl:l′

βl:l′
x[l]′ ≤

αl:l′

βl:l′
cl′)

)
∨(q[l] +

αl:l′
βl:l′

x[l]′ ≤ αl:l′
βl:l′

cl′)
)
.

(5.28)

Notice how the minimizer in (5.27) is translated to a disjunction in (5.28).

Now we explain the controls. The actuated flow of link l at time t is denoted by
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x[l], x[l′]

q[l]

cl′

q̄l

αl:l′
βl:l′

(cl′ − x[l′])

free flow
congested flow

Figure 5·4: The fundamental diagram. The flow out of link l drops if
the number of vehicles on the immediate downstream link l′ is close to
its capacity. The congestion is defined by this blocking behavior.

~q[l],t, where we have the following relations:

~q[l],t =


s[l],tq[l],t, l ∈ Lr,
min{q[l],t, r[l],t}, l ∈ Lo,
q[l],t, l ∈ Lf ,

(5.29)

where s[l],t ∈ {0, 1} is the traffic light for link l, where 1 (respectively, 0) stands for

green (respectively, red) light, and r[l],t ∈ R+ is the ramp meter input for on-ramp

l at time t. Ramp meter input limits the number of vehicles that are allowed to

enter the freeway in one time step. In order to disallow simultaneous green lights

for links l, l′ (which are typically pair of links pointing toward a common intersection

in perpendicular directions), we add the additional constraints s[l],t + s[l]′,t ≤ 1. In

simple gridded networks, as in our case study network illustrated in Fig. 5·5, it is more

convenient to define phases for actuation in north-south or east-west directions that

are unambiguously mapped to traffic lights for each individual link. The evolution of

the network is given by:

x[l],t+1 = x[l],t − ~q[l],t + w[l],t +
∑

l′,η(l′)=τ(l)

βl′:l~q[l′],t, (5.30)

where w[l],t is the number of exogenous vehicles entering link l at time t, which is

viewed as the adversarial input. The evolution relation above can be compacted into
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the form (5.1):

xt+1 = ftraffic(xt, ut, wt), (5.31)

where ut and wt are the vector representations for control inputs (combination of

traffic lights and ramp meters) and disturbances inputs, respectively. Note that ftraffic

represents a hybrid system which each mode is affine. The mode is determined by the

control inputs and state (which determines the minimizer arguments). Some works

consider nonlinear representations for the fundamental digram (Fig. 5·4), but they

still can be approximated using piecewise affine functions.

5.5.2 Monotonicity

Theorem 9. System (5.31) is monotone in Π.

Proof. Consider x′, x ∈ Π, x � x′. We show that ftraffic(x, u, w) � ftraffic(x
′, u, w),∀w ∈

W ,∀u ∈ U . Observe in (6.1) that we only need to verify is proving that x[l] − ~q[l] is

a non-decreasing function of x[l] as all other terms are additive and non-decreasing

with respect to x. Since x, x′ ∈ Π, the last argument in (5.26) is never the minimizer.

Thus, for all l ∈ L, we have x[l] − ~q[l] ∈ {0, x[l] − r[l], x[l] − cl, x[l]}, depending on the

mode of the system and actuations, which all are non-decreasing functions of x[l].

Thus, ftraffic is monotone in Π.

The primary objective in our traffic management approach is finding control poli-

cies such that the state is restricted to Π, which not only eliminates congestion,

but also ensures that the system is monotone hence the methods of this chapter be-

come applicable. It is worth to note that the traffic system becomes non-monotone

when flow is congested in diverging junctions, as shown in [Coogan and Arcak, 2014].

This phenomena is attributed to the first-in-first-out (FIFO) nature of the model.
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Figure 5·5: Traffic management case study: A network of freeways
and urban roads. There are 14 intersections controlled by traffic lights
and 4 ramp meters.

By assuming fully non-FIFO models, system becomes monotone in the whole state

space. For a more thorough discussion on physical aspects of monotonicity in traffic

networks, see [Coogan et al., 2016a].

The maximal system in (5.31) corresponds to the scenario where each wl is equal

to its maximum allowed value w∗l .

5.5.3 Case Study

Network

Consider the network in Fig. 5·5, which consists of urban roads (links 1-26, 27,29,31,33

and 49-53), freeway segments (links 35-48) and freeway on-ramps (links 28,30,32,34).

The layout of the network illustrates a freeway passing by an urban area, which

is common in many realistic traffic layouts. There are 14 intersections (nodes a-n)

controlled by traffic lights. Each intersection has two modes of actuation: north-south

(NS) and east-west (EW). There are four entries to the freeway (nodes o-r) that are

regulated by ramp meters. We have n = 53 and U = R4
+ × {0, 1}14. Vehicles arrive

from links 1,6,11,15,19,23,35,42,49 and 52. The parameters of the network are shown

in Table 5.1.
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Table 5.1: Parameters of the network in Fig. 5·5

links parameters
1− 26, 49− 53 q̄l = 15, cl = 40

27− 34 q̄l = 15, cl = 30
35− 48 q̄l = 40, cl = 60

Turning ratios value
β2:50, β4:53, β8:51, β12:7, β13:28, β15:30, β16:28,
β21:32, β24:32, β26:2, β36:31, β36:33, β39:27, β43:29

0.2

β5:12, β6:13, β6:18, β10:21, β10:26 0.3
β1:20, β6:7 0.4

β1:2, β11:12, β14:30, β17:7, β17:18, β19:2, β19:20,
β22:34, β23:24, β23:34, β27:14, β27:17, β29:16, β31:22,
β31:25, β33:24, β49:3, β49:50, β51:4, β52:5, β52:53,

0.5

β2:3, β3:4, β4:5, β8:9, β12:13, β13:14, β15:16, β16:17, β20:21,
β21:22, β24:25, β25:26, β36:37, β39:40, β43:44, β46:47,

0.8

Capacity ratios value
α19:2, α26:2, α17:7, α12:7, α13:28, α16:28
α14:30, α15:30, α21:32, α24:32, α22:34, α23:34

0.5

Disturbances (arrival rates)
w∗1 = w∗6 = 4.5, w∗11 = w∗15 = w∗19 = 5, w∗23 = 6

w∗35 = w∗42 = 20, w∗49 = w∗52 = 2

specification

As mentioned earlier, the primary objective is keeping the state in the congestion-

free set. In addition, since the demand for the north-south side roads (links 49-53) is

smaller than the traffic in the east-west roads, we add a timed liveness requirement

for the traffic flow on links 49-53:

ψ =
∧

l=49,50,··· ,53

(x[l] ≥ 5)⇒ F[0,3](x[l] ≤ 5),

which states that “if the number of vehicles on any of the north-south side roads

exceeds 5, their flow is eventually actuated within three time units ahead”. The

global specification is given as:

φ = G[0,∞] ((x ∈ Π) ∧ ψ) . (5.32)

Note that hϕ = 3, ϕ = (x ∈ Π) ∧ ψ.
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Open-loop Control Policy

We use Theorem 7. The shortest φ-sequence that we found for this problem has

T = 5, T0 = 0. The corresponding MILP had 2357 variables (of which 1061 were

binary) and 4037 constraints 4, which is solved using the Gurobi MILP solver in less

than 6 seconds on a dual core 3.0 GHz MacBook Pro. The cost is set to zero in order

to just check for feasibility. Even though finding an optimal solution and checking

for feasibility of a MILP have the same theoretical complexity, the latter is executed

much faster in practice.

For instance, finding a φ-sequence, while minimizing
∑7

k=0 ‖x
φ
k‖1 takes 1238 sec-

onds. Note that it is virtually intractable to attack a problem of this size (53 dimen-

sional state) using any method that involves state-space discretization, such as the

method in [Coogan and Arcak, 2015] (e.g., if each state-component is partitioned into

2 intervals, the finite-state problem size will be 253).

Monotonicity implies that any demand set W for which there exists a solution

to Problem 5 is a lower-set. The set corresponding to the values at the bottom of

Table 5.1 is one of them. Table 5.2 shows results existence results for some other

demand scenarios. Computation times for solving a MILP do not demonstrate a

generic behavior. For the rest of this section, the numerical examples are reported

for the values in Table 5.1.

The control values in the φ-sequence are shown in Table 5.3. As stated in Theorem

7, starting from an initial condition in L(x0), applying the open-loop control policy

(5.12) guarantees satisfaction of the specification. In other words, after applying

the initialization segment, the repetitive controls in Table 5.3 become a fixed time-

table for the inputs of the traffic lights and the ramp meters. Starting from x0,

4The scripts for this case study are available in http://blogs.bu.edu/sadra/format-monotone
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Table 5.2: Existence of φ-sequences for the network in Fig. 5·5

Demand Changes from Table 5.1 T Existence Comp. Time (s)
- 5 yes 6
- 6 no 4
- 7 no 10
- 8 no 75
- 9 no 11
- 10 yes 36

w∗1 = w∗6 = 3, w∗11 = w∗15 = w∗19 = 6 5 yes 5
w∗1 = w∗6 = 4, w∗11 = w∗15 = w∗19 = 6 5 no 0.5
w∗1 = w∗6 = 1.5, w∗49 = w∗52 = 3.5 5 yes 16

w∗1 = w∗6 = 7.5, w∗11 = w∗15 = w∗19 = w∗23 = 2 6 yes 9
w∗1 = w∗6 = 9, w∗11 = w∗15 = w∗19 = w∗23 = 1 5 yes 4
w∗1 = w∗6 = 10, w∗11 = w∗15 = w∗19 = w∗23 = 0 30 no 3.5

w∗15 = w∗23 = 8, w∗35 = w∗42 = 10 6 yes 23
w∗15 = w∗23 = 0, w∗35 = w∗42 = 30 5 yes 4

which is a 53-dimensional vector, we apply (5.12) using the values in Table 5.3. The

trajectory of the maximal system is shown in Fig. 5·6 [Top]. The traffic signals are

coordinated such that the traffic flows free of congestion. The black dashed lines

represent the capacity of the links, and the dashed line in the fourth figure (from the

left) represents the threshold for the liveness sub-specification (ψ). It is observed that

all the state values for side road links (49-53) persistently fall below the threshold.

The robustness values for (x ∈ Π) and ψ are shown in the fifth figure. As mentioned

earlier, robustness corresponds to the minimum volume of vehicles that the system

is away from congestion, or violating the specification. The robustness values are

always positive, indicating satisfaction.

As stated in Theorem 4, the trajectory of the maximal system converges to a

periodic orbit. It is worth to not that the number of vehicles on freeway links is

significantly smaller than its capacity, which is attributed to the fact that the number

designated for q̄ (related to the maximum speed) of freeway links is relatively large

(30, as opposed to 15 for roads). Therefore, freeway links are utilized in a way that

there is enough space for high speed non-congested flow.
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Table 5.3: φ-sequence in the case study

- Initialization Repetitive Controls
node uφ0 uφ1 uφ2 uφ3 uφ4 uφ5 uφ6 uφ7
a EW NS NS NS EW EW NS NS
b NS EW EW EW NS NS EW EW
c EW NS NS EW EW EW NS NS
d EW NS EW NS EW EW NS EW
e EW EW NS NS NS EW EW NS
f NS EW NS EW NS NS EW NS
g NS EW NS EW EW NS EW NS
h EW NS EW EW EW EW NS EW
i EW NS EW EW NS EW NS EW
j EW EW NS NS EW EW EW NS
k EW EW NS NS NS EW EW NS
l NS EW EW NS NS NS EW EW
m EW NS NS EW NS EW NS NS
n NS NS EW NS EW NS NS EW
o 0.0 0.0 0.0 12.8 0.0 0.0 0.0 0.0
p 4.0 14.0 0.0 9.5 0.0 4.0 11.5 0.0
q 0.0 0.0 10.0 0.0 2.5 0.0 0.0 10.0
r 5.5 0.0 4.0 14.0 11.5 5.5 0.0 4.0

Robust MPC

Here it is assumed that the controller has full state knowledge. We apply the tech-

niques developed in Sec. 5.4. Using the result from the previous section, the set ΩLϕ

is constructed in R212
+ (= Rn(hϕ+1), n = 53, hϕ = 3). The cost criteria that we use in

this case study is the total delay induced in the network over the planning horizon

H. A vehicle is delayed by one time unit if it can not flow out of a link in one time

step, which may be because of the actuation (e.g., red light) or waiting for the flow

of other vehicles in the same link (i.e., we have x[l] ≥ cl). We are also interested in

maximizing the STL robustness score. The cost function is:

Jtraffic(x
H , uH) := −ζ ρ(x,G[0,H−1]ϕ, t− hϕ + 1)

+
H−1∑
k=0

γk
∑
l∈L

(x[l],t+k − ~q[l],t+k),
(5.33)

where ~q[l], given by (5.29), is the amount of vehicles that flow out of link l, γ is

the discount factor for delays predicted in further future, and ζ is a positive weight
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for robustness. Notice the connection between the time window of STL robustness

score in (5.33) and MPC constraint enforcement in (5.24). It follows from Theorem

9 and STL quantitative semantics Definition 7 that the cost function above is non-

decreasing with respect to the state in Π. Therefore, in order to minimize the worst

case cost, the maximal system is considered in the MPC optimization problem.

Starting from zero initial conditions, we implement the MPC algorithm (5.25)

with H = 3 for 40 time steps. We set ζ = 1000, γ = 0.5 in (5.33). The disturbances

at each time step were randomly drawn from L(w∗) using a uniform distribution.

The maximum computation time for each MPC step time step was less than 0.8

seconds (less than 0.5 seconds on average). The resulting trajectory is shown in Fig.

5·6 [Middle]. For the same sequence of disturbances, the trajectory resulted from

applying the open-loop control policy (5.12) (using the values in Table 5.3) is shown

in Fig. 5·6 [Bottom]. Both trajectories satisfy the specification. However, robust

MPC has obviously better performance when costs are considered. The total delay

accumulated over 40 time steps is:

J40 =
40∑
τ=0

∑
l∈L

(x[l],τ − ~q[l],τ ).

The cost above obtained from applying robust MPC was J40 = 1843, while the one

for the open-loop control policy was J40 = 2299, which demonstrates the usefulness of

the state knowledge in planning controls in a more optimal way. An optimal tuning

of parameters η and γ requires an experimental study which is out of scope of this

chapter. We only remark that we usually obtained larger delays with non-zero η,

which shows that including STL robustness score in the MPC cost function may be

useful even though the ultimate goal is minimizing the total delay.

It is worth to note that we also tried implementing the MPC algorithm (for the
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Figure 5·6: Traffic management case study: [Top Row] the trajectory
of the maximal system obtained from applying the open-loop control
policy (5.12) with initial condition xφ0 [Middle Row] robust MPC gen-
erated trajectory with zero initial condition with disturbances chosen
uniformly L(w∗) [Bottom Row] trajectory generated from applying the
open-loop control policy (5.12) with zero initial conditions and the same
disturbances as in [Middle Row].

case w = (w∗)ω, or the maximal system) without the terminal constraints, as in

(5.23). The MPC got infeasible at t = 8. The violating constraints were those in

x ∈ Π. This observation indicates that the myopic behavior of MPC in (5.23), when

no additional constraints are considered, can lead to congestion in the network.



Chapter 6

Contract-based Design

In this chapter, we follow a divide and conquer approach to control synthesis for

traffic networks. We partition the network into smaller subnetworks and synthesize

controls locally for each subnetwork. For the dynamical interconnections between

the subnetworks, we take an assume-guarantee approach [Henzinger et al., 1998].

Each subnetwork assumes the interconnection effects from its neighbors satisfy a set

of contracts, while the controllers of neighboring subnetworks promise to maintain

those contracts. Therefore, local controls can be planned optimally in a decentral-

ized manner but with a global coordination induced by the contracts and the global

network specification, which is ensured to be satisfied.

The main contributions of the chapter are as follows. First, we provide a method

to synthesize assume-guarantee contracts by feasibility checking of a mixed-integer

linear programming (MILP) problem, which is computed offline and it can be applied

to relatively large networks. Second, we find local controls optimally using a robust

MPC approach, which has feasibility guarantees for both the local constraints and

contracts hence the overall global specification is ensured. We present a case study

on an urban traffic network and provide preliminary results on applying our methods

to microscopic traffic models.

This chapter is organized as follows. We formulate the problem in Sec. 8.1. In Sec.

92
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6.3, we explain how to partition a network considering constraints of the system and

specification. The technical details on computation of assume-guarantee contracts

and control synthesis are explained in Sec. 6.4 and Sec. 6.5, respectively. The case

study is presented in Sec. 8.5.

6.1 Traffic Network Model

We introduce some new notation. A link l is defined as a one-way traffic road segment

with the following attributes:

• cl ∈ R+ is the capacity of l;

• xl,t ∈ [0, cl] is the volume of vehicles on l at time t, t ∈ N;

• ql ∈ R+ is the maximum outflow (maximum volume of vehicles that can flow

out of l in one time step);

• ul,t ∈ Ul is the control input of l at time t, where Ul depends on the type of l:

– if l is controlled with traffic lights: Ul = {0, 1}, where 1 (0) corresponds to

green (red) light;

– if l is controlled with ramp meter/speed limit: Ul = [0, 1], where ul is the

ratio of the maximum outflow ql that is allowed to flow out of the link in

one time step;

– if l is uncontrolled: Ul = {1}.

Additional constraints on control inputs (e.g., sequentiality constraints) are expressed

using MTL formulas and are considered as a part of the problem formulated in Sec.

8.1.
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Definition 25. A traffic network is defined as a tuple N = (L, δ, α, β,A, w) , where:

• L is the set of links in the network;

• δ : L → 2L, where δ(l) is the set of downstream links of l (downstream function;

defines network topology);

• α : L × L → [0, 1], where α(l, l′), l′ ∈ δ(l), is the ratio of vacancies available in

l′ dedicated to l, which is assumed to be constant (capacity ratios);

• β : L × L → [0, 1], where β(l, l′), l′ ∈ δ(l), is the ratio of volume flowing from l

to l′, which is assumed to be constant (turning ratios);

• A ⊂ L×L is the set of antagonistic pairs. Two links form an antagonistic pair

if their traffic lights are not allowed to be green simultaneously 1 (defines traffic

phases);

• w : L × N → R+, where w(l, t) is the exogenous demand (volume of vehicles

entering from outside of the network) towards l at time t.

Example 12. Consider the network in Fig. 6·1 with 84 links. This network represents

two urban areas on north and south sides connected by three bridges in between (the

network topology is inspired by the Boston-Cambridge area). Each link is shown as

a directed edge between nodes (intersections) shown as squares. For all links we have

cl = 40, ql = 15. The long bridges in the middle are divided into two separate links,

and links 35, 41, 47, 53, 59, 65 are uncontrolled (i.e., there are no traffic lights in

the middle of the bridges). We have l′ ∈ δ(l) if the head of edge representing l is

followed by the tail of edge representing l′. For example, we have δ(1) = {2, 34, 44},

δ(14) = {15, 75}, δ(53) = {54}, δ(76) = ∅, etc. Antagonistic pairs are determined by

1We assume that all antagonistic pairs are controlled by traffic lights.
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Figure 6·1: Traffic Network Topology

trivial traffic conventions. For instance, {12, 54} ∈ A, as the pair head into a common

intersection in perpendicular directions. The values for w(l, t) vary between 0 and 8

vehicles per time step, depending on the location of the link. The detailed valuations

for w, and for other network components from Definition 25 including α and β, are

not provided here but are available in sites.bu.edu/hyness/format-distributed.

We define the set of outgoing links of a network by Lout := {l ∈ L|δ(l) = ∅} and

the set of internal links as Lint := L\Lout. When describing the dynamics of a traffic

network N , we are only interested in the evolution of the internal links. The outflow

of an internal link l at time t is defined as:

fl,t := min

{
xl,t, ul,tql, min

l′∈δ(l)

α(l, l′)

β(l, l′)
(cl′ − xl′,t)

}
. (6.1)

Note that the outflow is zero if ul,t = 0 (red light). The last argument of the mini-

mizer is determined by the minimum available vacancy in the downstream links of l.

Physically, the outflow model above is governed by the first-in-first-out (FIFO) rule

[Coogan et al., 2016a]. As a consequence of this rule, lack of enough vacancy in a link

blocks the flow of its upstream links to all other surrounding links. For example, in



96

Fig. 6·1, if link 4 does not have enough vacancy for accommodating flow from link 3,

the flow from 3 to 74 is also blocked.

For all antagonistic pairs (l, l′) ∈ A, we have ul,t +ul′,t ≤ 1, ∀t ∈ N. The evolution

of an internal link l is given by:

xl,t+1 = min
{
xl,t+1 − fl,t +

∑
l′,l∈δ(l′)

β(l′, l)fl′,t + w(l, t), cl
}
. (6.2)

The volume of vehicles that leave the network through an outgoing link at time t is:

yl,t :=
∑

l′,l∈δ(l′)

β(l′, l)fl′,t, l ∈ Lout. (6.3)

The network dynamics is represented in a compact form as the following discrete-time

system:

xt+1 = F (xt, ut, wt), (6.4)

yt = G(xt, ut), (6.5)

where

• xt = {xl,t}l∈Lint , is the state at time t. We have xt ∈ X ,∀t ∈ N, where X =∏
l∈Lint

[0, cl].

• ut = {ul,t}l∈Lint is the control input at time t. We have ut ∈ U ,∀t ∈ N, where

U ⊆
∏
l∈Lint

Ul.

• wt = {w(l, t)}l∈Lint is the additive disturbance at time t. We have wt ∈ W ,∀t ∈

N, where W ⊂ R|L
int|

+ is the set of admissible disturbances.

• yt = {yl,t}l∈Lout is the output at time t. We have yt ⊂ R|L
out|

+ ,∀t ∈ N.
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Note that both F : X × U ×W → X and G : X × U → R|L
out|

+ are piecewise affine

and positive.

6.2 Problem Statement

Consider a traffic network N .

Assumption 2. The set of admissible additive disturbances is in the form W =

L(wmax), wmax ∈ R|L
int|

+ .

The assumption above is reasonable when the sources of the exogenous demands

are independent of each other. Thus we have w(l, t) ∈ [0, wmax
l,t ],∀l ∈ Lint,∀t ∈ N.

Definition 26. A control policy µ = {µt
∣∣t ∈ N} is a set of relations that map the

(partial) history of state and controls into an admissible control action:

ut = µt(x0, · · · , xt, u0, · · · , ut−1),

where µt : X t+1 × U t → U .

We assume full and exact state knowledge. We later explain how to relax this

assumption in Sec. 6.5. Given an initial condition x0, a control policy µ and a

sequence of additive disturbances w = w0, w1, · · · , the system run is defined as:

ζ(x0, µ,w) := (x0, u0), (x1, u1), · · · . (6.6)

Similarly, the output run is defined as ξ(x0, µ,w) := y0, y1, · · · .

Definition 27. The congestion-free set of a network is defined as the set Π ⊂ X × U ,
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where:
Π :=

{
(x, u)

∣∣∣min{ulql, xl} ≤ min
l′∈δ(l)

{α(l,l′)
β(l,l′)

(cl′ − xl′)
}
∧

xl − fl +
∑

l′,l∈δ(l′)

β(l′, l)fl′ + wmax
l ≤ cl,∀l ∈ Lint

}
.

If the system is in the congestion-free set, then the two following properties hold.

First, the last argument from the minimization in (6.1) is never the minimizer. Thus,

the flow of a link is never obstructed due to the lack of enough vacancy in its down-

stream links. Second, cl in (6.2) is also never the minimizer. Therefore, the total

exogenous demand from outside of the network is accommodated in the network

hence there is no flow obstruction from outside of the network as well. Our primary

interest is finding a control policy such that the evolution of the network is always

restricted to the congestion-free set.

Furthermore, we are also interested in various other objectives described using

MTL. We allow for two types of atomic propositions. First are linear predicates over

state, which are of the following form:

px = (a1xl1 + a2xl2 + · · ·+ anpxlnp ≤ b), (6.7)

where l1, l2, · · · , lnp are the links whose vehicular volumes appear in px and b, ai ∈

R+, i = 1, · · · , np. Since all values are positive, the half space induced by the linear

predicate above is a lower-set in X with partial order relation �+. Therefore, state

predicates are not falsified when vehicular volumes are decreased. It is also assumed

that no negation operator applies to state predicates. The second type of propositions

are predicates over controls, which are in the following form:

pu = (ul ∼ bu), (6.8)
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where ∼∈ {≤,≥,=}, bu ∈ [0, 1]. Using MTL temporal operators and Boolean con-

nectives, we can describe a wide variety of temporal properties for traffic networks.

Example 13. Consider the network in Fig. 6·1 and the following MTL specifications:

• ϕ1 = F[0,6) ((u12 = 0) ∧ (u46 = 0) ∧ (u54 = 0)); which reads: “within 6 time

units, all the traffic lights of links heading toward intersection at middle southern

area turn red (hence pedestrians can cross the intersection in diagonal direc-

tions)”.

• ϕ2 = ¬
(
(u28 = 0) ∧ F{1}(u28 = 1) ∧ F{2}(u28 = 0)

)
; which states: “the traffic

light of link 28 can not be green for just one time step.”

• ϕ3 = (x59 + x60 + x65 + x66 ≤ 100); which states: “the total volume of the

vehicles on the eastern bridge is less than 100.”

• ϕ4 = (x73 ≤ 5) ∨ F[0,4)(u73 = 1); which translates to: “if the volume of vehicles

on link 73 exceeds 5, its traffic light eventually turns green within 4 time units.”

Given a bounded MTL formula ϕ, we consider specifications of the following form:

Φglobal := G[0,∞)Φ, (6.9)

where Φ = ((x, u) ∈ Π)∧ ϕ, and Π is the congestion-free set from Definition 27. The

operator G[0,∞) (unbounded always) ensures that the congestion-free property and the

requirements in ϕ hold for all times. Note that h(Φ) = h(ϕ). It can be shown that

the proposition ((x, u) ∈ Π) can be transformed into a Boolean formula over state

and control predicates by translating the minimizers into mixed-logical equations.

We omit the explanation here as a similar procedure can be found in [Heemels et al.,

2001]. Given Φ and its atomic propositions in the form of (6.7), (6.8), the infinite

word generated by run (6.6) is denoted by σ(ζ(µ, x0,w)).
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Control policies guaranteeing satisfaction of Φglobal are often not unique. Thus,

we are interested in choosing one optimally with respect to a cost function. The cost

criterion that we consider in this chapter is the total amount of delay induced in the

network, which is defined as:

J(x0, µ,w) =
∞∑
t=0

∑
l∈Lint

γt(xl,t − fl,t), (6.10)

where γ ∈ (0, 1) is the discount factor that is introduced to make the infinite horizon

cost properly defined. Observe that xl,t − fl,t is the volume of vehicles on l at time

t that are unable to travel in the network for one time step. It is straightforward to

show that J ≤ 1
1−γ

∑
l∈Lint

cl.

Problem 7. Given a traffic network N with dynamics (8.1), a time bounded MTL

specification ϕ with atomic propositions in the form of (6.7), (6.8), and the cost

function J as in (6.10), find a control policy µ and a set of initial conditions X0 ⊂ X

such that

σ0(ζ(x0, µ,w)) |= Φglobal,∀x0 ∈ X ,∀w.

Furthermore, given x0 ∈ X0, choose the optimal control policy such that the worst-

case cost is minimized:

minimize max
w

J((x0, µ,w))

subject to σ0(ζ(x0, µ,w)) |= Φglobal,∀w.
(6.11)

Our approach to Problem 7 involves some approximations. First, we only find

a subset of all admissible initial conditions. We discuss the completeness of our

method in Sec. 6.4. Second, we approximate the infinite horizon constrained optimal

control in Problem 7 as a receding horizon optimal control problem, i.e. we use a
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model predictive control (MPC) scheme. As mentioned earlier, there are two primary

challenges to this approach. First, we need to guarantee that control synthesis in a

receding horizon manner ensures global specification (6.9), which has infinite time

semantics. This issue is covered in Sec. 6.5. Second, constrained optimization is

computationally expensive beyond small networks hence controls can not be found in

a centralized manner in real time. To overcome this issue, we partition the network

into smaller subnetworks. The dynamics of subnetworks become interconnected since

vehicles that leave a subnetwork arrive in other subnetworks. As mentioned earlier,

we follow an assume-guarantee approach to design contracts for the interconnections

of the subnetworks. The details are explained in Sec. 6.4. Each subnetwork’s MPC

incorporates the relevant contracts, as explained in Sec. 6.5.

6.3 Network Partitioning

In this section, we explain how to partition a network into smaller subnetworks. We

write ϕ in conjunction normal form (CNF) 2:

ϕ =

nϕ∧
k=1

ϕconjk , (6.12)

where each ϕconjk can not be written as a conjunction of multiple MTL formulas. We

define

Links(ϕ) = {l ∈ L|xl or ul appears in ϕ}.

Assumption 3. Formula ϕ is sparse in the sense that for all k, k′ ∈ {1, · · · , nϕ}, k 6= k′,

we have Links(ϕconjk ) ⊆ Links(ϕconjk′ ) or Links(ϕconjk ) ∩ Links(ϕconjk′ ) = ∅.

The assumption above is reasonable in traffic networks since we are usually inter-

2Every MTL formula can be written in CNF.
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ested in requirements at specific locations. While our method can handle non-sparse

specifications by introducing some conservativeness (when designing contracts in Sec.

6.4), we do not discuss it in this chapter.

Given a network N and an integer N , we partition N into N 1,N 2, · · · ,NN . We

take the following considerations into account when a network is partitioned. First,

the set of subnetwork internal links has to be disjoint:
⋃N
i=1 Lint,i = Lint, Lint,i∩Lint,j =

∅,∀i 6= j, where Lint,i is the set of internal links of subnetwork N i. Second, we desire

that the size of a subnetwork (defined by the number of its internal links) does not

exceed a predetermined bound K, hence the size of its MPC optimization problem

(which is directly related to the number of internal links) is confined. Therefore, we

have |Lint,i| ≤ K, i = 1, · · · , N . Third, MTL formula ϕ has to be translated into a

conjunction of “local” MTL formulas for each subnetwork. Using the CNF of ϕ, we

require that ∃i ∈ {1, · · · , N} such that Links(ϕconjk ) ⊆ Lint,i, k = 1, · · · , nϕ. Fourth,

for all l, l′ ∈ A, we have ∃i ∈ {1, · · · , N} such that l, l′ ∈ Lint,i. Therefore, the links

of each antagonistic pair are assigned to a single subnetwork. This is important since

subnetworks are controlled in a decentralized way and the controls for antagonistic

pairs are directly coupled. Fifth, for all l ∈ Li, we have δi(l) = δ(l) ∩ Li, where

δi defines the downstream function of N i. Finally, the partitioning should lead to

sparsity in the sense that the interconnections between subnetworks are minimal. As

it will be explained later, while not affecting the satisfaction of the global specification

(6.9), interconnections impose constraints that may introduce conservativeness into

the planning of controls. Within all possible partitionings, want to choose the one for

which the total number of interconnections is minimized:

minimize
1

2

N∑
i

N∑
j,i6=j

|Li ∩ Lj|.
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The presence of constraints related to the specification makes our network partitioning

problem different from the traditional graph partitioning problems in the literature

[Shi and Malik, 2000]. For each internal link l of N , we define N binary variables

bil ∈ {0, 1}, i = 1, · · · , N, where bil = 1 indicates l is assigned to the internal links of

network N i. We note that links in Lout are excluded from the assignment process.

We formulate the requirements that were explained above as the following integer

constraints: 

N∑
i=1

bil = 1,∀l ∈ Lint,∑
l∈L

bil ≤ K,

bil = bil′ ,∀(l, l′) ∈ A,
bil = bil′ ,∀l, l′ ∈ Links(ϕconjk ), k = 1, · · · , nϕ,

(6.13)

where i = 1, · · · , N . The first states that the sets of internal links are disjoint, the

second ensures that the size of each subnetwork is bounded by K, the third reads that

antagonistic links are assigned to the same subnetwork, and fourth declares that all

the links in non-conjunctive sub-specifications are assigned to the same subnetwork.

It is easy to show that the total number of interconnections is equal to the sum-

mation of the differences in binary assignments of links that are related by δ:

N∑
i

N∑
j,i6=j

|Li ∩ Lj| =
∑

l∈L,l′∈δ(l)

N∑
i

N∑
j,i6=j

|bil − b
j
l′|. (6.14)

The decisions for {bil}i=1,··· ,N,l∈Lint are found by solving the following integer program-

ming problem:

minimize
∑

l∈L,l′∈δ(l)

N∑
i

N∑
j,i6=j

|bil − b
j
l′|

subject to (6.13).

(6.15)

The complexity of integer programming problems grow exponentially with the number



104

A1

A4

A2

A3

Figure 6·2: Network Partitioned into 4 Subnetworks

of variables. The choices for N,K are determined by the user. Usually, K is related

to the computation power available for solving the MPC optimization problems in

real time. We choose N as the minimum integer such that a feasible solution to (6.15)

exists.

Example 14. The partitioning for the network in Fig. 6·1 with N = 4, K = 20, is

illustrated in Fig. 6·2. Solving (6.15) with 524 binary variables took 0.65 seconds on

a dual core 3GHz Macbook Pro using Gurobi 3. The internal links of each subnetwork

are shown with the same color.

Throughout this chapter, we use “local” and “global” to refer to the attributes of

a subnetwork and the original network, respectively. Once a network is partitioned,

αi, βi, Ai, i = 1, · · · , N , are constructed in the obvious way such that the values in

α, β and the pairs in A are inherited. Note that an interconnection is essentially a

local outgoing link for one subnetwork and a local internal link for the other. We

define the local version of Φ for subnetwork N i as:

Φi := ((xi, ui) ∈ πi) ∧
∧

Links(ϕconjk )⊆Lint,i

ϕconjk . (6.16)

3www.gurobi.com

www.gurobi.com
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Note that the control of each link is assigned to a single subsystem. The control

policy, the set of initial conditions and the run of subsystem i are denoted by µi, X i
0,

and ζ i, respectively.

For each N i, i = 1, · · · , N , we define the sets of downstream and upstream sub-

networks as Down(N i) :=
{
N j|∃l ∈ Lint,i, δ(l) ∈ Lint,j

}
, Up(N i) :=

{
N j|∃l ∈

Lint,j, δ(l) ∈ Lint,i
}
, respectively. Since most interconnections are two-way, often two

subnetworks are both upstream and downstream of each other. Vehicles leaving a sub-

network can enter to one of its downstream subnetworks or leave the entire network.

In other words, some components of the output of a subnetwork become additive

disturbances for its downstream subnetwork. For all interconnections we have:

wi(l, t) = w(l, t) +
∑

N j∈Up(N i),l∈Lj,out

yjl,t. (6.17)

We write the system equations for each subnetwork as xit+1 = F i(xit, u
i
t, w

i
t), y

i
t =

Gi(xit, u
i
t).

6.4 Contract Synthesis

In this section, we explain how the assume-guarantee contracts between subnetworks

in a partition are found and used for decentralized control synthesis, while satisfying

the global specification (6.9). We use the fact that traffic dynamics are monotone

in the congestion-free set and the satisfaction of (6.9) can be converted into a set-

invariance problem in the trajectory space of length h(Φ).
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6.4.1 Assume-Guarantee Contracts

For notation convenience, we denote the components of output of N i that affect N j

as yi→jt := {yil,t}l∈Lout,i,Lint,j . We also define ξi→j := yi→j0 , yi→j1 , · · · .

Definition 28. An assume-guarantee contract (AGC) ψi→j is an MTL formula, with

atomic propositions as predicates over yi→jt , such that:

• subnetwork N j assumes that ξi→j (which acts on as disturbance) satisfies

G[0,∞)ψ
i→j;

• subnetwork N i guarantees that ξi→j (which is its output) satisfies G[0,∞)ψ
i→j.

The key idea in contract-based control design is that once AGCs are found such

that local control polices exist to ensure them, then the local controllers can operate in

a decentralized manner. We also require the following assumption for synchronization

of time between subnetworks:

Assumption 4. All subnetworks have access to a global clock.

This assumption will be further discussed in Sec. 6.4.5. Given subnetworks

N 1, · · · ,NN , we design all AGCs such that

N∧
i=1

(G[0,∞)(Φ
i ∧

∧
N j∈Down(N i)

ψi→j))⇒ Φglobal. (6.18)

Moreover, there should exist local control policies µi and a non-empty set of initial

conditions X i
0, i = 1, · · · , N , such that both assumptions and guarantees are met.

That is to say for all allowable wi that satisfy
∧
N j∈Up(N i) ψ

j→i (assumptions), we

have

σi0(ζ i(xi0, µ
i,wi)) |= G[0,∞)(Φ

i ∧
∧

N j∈Down(N i)

ψi→j), (6.19)
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for all xi0 ∈ X i
0 (guarantees). Note that word σi is constructed from the local propo-

sitions including those of the local contracts.

As one can observe, the design of AGCs falls into circular reasoning for subnet-

works that have two-way interconnections. Moreover, AGCs are often not unique. In

this chapter, we formulate the problem of contract synthesis as a single constraint

satisfaction problem, which leads to feasibility check for a MILP problem. Although

the complexity grows exponentially (in the worst case) with respect to network size,

we show that the computation time is small for fairly large networks (e.g., the network

in Fig. 6·1). Note that contracts are computed offline.

6.4.2 Monotonicity

Proposition 5. System (8.1) is monotone with respect to the additive disturbances in

the sense that ∀x ∈ X , ∀u ∈ U , we have F (x, u, w) �+ F (x, u, wmax),∀w ∈ W .

Proposition 6. System (8.1),(6.5) is monotone with respect to the state in the congestion-

free set, i.e. for all (x, u) ∈ Π, (x′, u) ∈ Π such that x �+ x′, we have F (x, u, w) �+

F (x′, u, w),∀w ∈ W , and G(x, u) �+ G(x′, u).

Proof. First, it is easy to show that system (8.1) is continuous. We need to prove that

all the components of the Jacobian ∂F
∂x

are non-negative, whether they are given by

the left are right derivative in case of discontinuities. We check the property for (6.2).

Observe that
∂xl,t+1

∂xl,t
∈ {0, 1}, depending on the active minimizer from (6.1). The only

case that
∂xl,t+1

∂xl′,t
< 0 is when ∃k, l′ ∈ δ(k), l ∈ δ(k) such that fk,l′ = α(k,l′)

β(k,l′)
(cl′ − xl′,t).

However, by the definition of the congestion free set, the last argument in (6.1) is

never the minimizer. Thus, the system is monotone.

It is worth to note that monotonicity property is not valid under FIFO rule for

congested flow in diverging intersections [Coogan et al., 2016a]. Monotonicity enables
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us to evaluate the worst-case trajectories by setting the disturbances to wmax, a

technique that we use frequently in this chapter.

6.4.3 Language Realization Set

We define the extended state st, t ∈ N such that

st :=
(
(xt, ut), (xt+1, ut+1), · · · , (xt+h(Φ)−1, ut+h(Φ)−1)

)
,

where st ∈ S, S =
∏h(Φ)

τ=0 (X × U). For notation convenience, we define XS and

US such that xt = XS(st) and ut = US(st). Using st and atomic propositions in

Φ, one can obtain the observations in σ[t,t+h(Φ)). Therefore, we can check whether

σ[t,t+h(Φ))(st) |= Φ.

Definition 29. The language realization set (LRS) of an MTL formula Φ is defined

as:

LRS(Φ) :=
{
s0 ∈ S|σ[0:h(Φ))(s0) |= Φ

}
. (6.20)

In other words, LRS(Φ) ⊆ S is the set of all h(Φ)-length runs that generate

suffixes satisfying Φ.

Proposition 7. The word generated by ζ(x0, µ, w) satisfies G[0,∞)Φ if and only if

st ∈ LRS(Φ),∀t ∈ N.

The relation �S is defined such that s �S s′ indicates 1) xk �+ x′k, and 2) uk = u′k,

k = 0, 1, · · · , h(Φ)− 1.

Proposition 8. The relation �S is a partial order.

Proof. The proof follows from verifying that �S satisfies antisymmetry, reflexivity

and transitivity.
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For the remainder of this section, we use partial order �S .

Proposition 9. LRS(Φ) ⊂ S is a lower-set.

Proof. (sketch) Consider any s ∈ LRS(Φ) and s′ such that s′ �S s. We need to show

that s′ ∈ LRS(Φ). The decrease in the state components does not falsify any predicate

over the state. In addition, the controls are unchanged hence predicates over control

are not falsified either. Therefore s′ ∈ LRS(Φ) and LRS(Φ) is a lower-set.

6.4.4 Controlled Invariance

The evolution of the extended state st is written as:

st+1 = FS(st, vt, dt), (6.21)

where vt = ut+h(Φ) is the extended control, dt = wt+h(Φ) is the extended disturbance,

and FS(st, vt, dt) is:

(
(x1, u1), · · · , (x(h(Φ), u(h(Φ)), (F (x(h(Φ), vt, dt)), vt)

)
.

Proposition 10. System (6.21) is monotone with respect to the extended state in

LRS(Φ).

In order to satisfy G[0,∞)Φ, we need to compute a robust control invariant set

(RCIS) [Kerrigan, 2000] that lies entirely in LRS(Φ). Computation of an RCIS in-

side a non-convex set for a hybrid system is a computationally difficult problem. We

exploit monotonicity to propose an alternative computational approach. The follow-

ing theorem is an extension of the one in our previous work [Sadraddini and Belta,

2016b]:
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Theorem 10. Consider a sequence of extended states s∗0, s∗1,· · · , s∗T−1, and a sequence

of extended controls v∗0, v∗1, · · · , v∗T−1, such that

1. s∗k+1 = FS(sk, vk, d
max
k );

2. s∗k ∈ LRS(Φ), k = 0, 1, · · · , T − 1;

3. sT � s∗0.

Then Ω :=
⋃T−1
k=0 L(s∗k) is an RCIS inside LRS(Φ).

We refer to the obtained extended control sequence v∗0, v∗1, · · · , v∗T−1 as s-sequence,

where T is its length. The main feature of the theorem above is that we can compute

an RCIS without using the traditional fixed-point algorithm [Kerrigan, 2000], which

is computationally intractable for hybrid systems and does not guarantee termination

in finite steps.

Piecewise affine systems can be transformed into a set of mixed-integer linear

equations [Heemels et al., 2001]. Temporal logic constraints characterizing LSR(Φ)

can also be translated into mixed-integer constraints [Raman et al., 2014]. Finally,

the terminal condition s∗T � s∗0 is a linear constraint. The details of the procedures

are not explained in this chapter as they are well documented in the mentioned works.

The conditions in Theorem 10 becomes equivalent to finding a feasible solution to a

MILP problem. Note that even though the computational complexity of solving a

MILP is NP-hard in general, finding a feasible solution is significantly faster than

finding an optimal solution.

In order to compute an RCIS, we start from T = 1 and implement T ← T+1 until

the MILP for Theorem 10 becomes feasible. In [Sadraddini and Belta, 2016b], we only

considered invariance of a set in the state space and we showed that computing RCISs

using a simplified version of Theorem 10 is almost complete. That is to say, as T



111

becomes larger, a feasible solution should exist if there exists any non-empty RCIS.

However, the same result does not hold here as we are also considering propositions

over controls.

Example 15. We formulated the conditions in Theorem 10 for the network in Fig.

6·1. We have ϕ =
∧4
i=1 ϕi, where ϕi’s are given in Example 13. Note that h(ϕ) = 6.

The smallest T for which a feasible solution exists is T = 6. The corresponding MILP

has 5981 variables (1236 binary) and 2902 constraints. It takes 8.6 seconds on a dual

core 3.0 GHz MacBook Pro to find a feasible solution and hence an RCIS in LRS(Φ),

which lies in R420
+ × {0, 1}384.

Proposition 11. A control policy satisfying Φglobal starting from x0 exists if x0 ∈ XΩ
0 ,

where

XΩ
0 :=

{
x0 ∈ X

∣∣∃i ∈ {0, · · · , T − 1}, x0 ≤ XS(s∗i )
}
. (6.22)

The set of admissible initial conditions are characterized by the computed RCIS.

In order to find the set of all admissible initial conditions, one has to compute the

maximal RCIS, which is unfortunately not possible beyond few dimensions.

Proposition 12. [Sadraddini and Belta, 2016b] If v∗0, v
∗
1, · · · , v∗T−1 is a s-sequence cor-

responding to s∗0, s
∗
1, · · · , s∗T−1, then for all initial conditions in L(XS(s∗0)), applying

the following open-loop control sequence:

uopen-loop := v∗0, v
∗
1, · · · , v∗T−1 (6.23)

guarantees satisfaction of Φglobal for all allowable w.

Therefore, an open-loop solution to Problem 7 is obtained but without any opti-

mality considerations.
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6.4.5 Contracts

Now we explain how to extract contracts from a feasible solution for the constraints

in Theorem 10. We denote s, s∗ and S corresponding to subnetwork N i by si, s∗,i

and S i, respectively.

Definition 30. The global clock is defined as G : N → {0, 1, · · · , T − 1}, where Gt is

its value at time t.

As mentioned earlier, we assume that all the local controllers have the knowledge

of the global clock. The “natural” evolution of the global clock is such that if Gt = τ ,

then Gt+1 = (τ + 1) mod T . However, in case local controllers share information, we

allow the value of the global clock to be determined by the local controllers. The

details are explained in Sec. 6.5.2.

Proposition 13. Suppose the global clock value at time t is τ and the extended state

is st, where st �S s∗τ . Then we have yit �+ y∗,iτ , where y∗,iτ = Gi(x∗,iτ , u
∗,i
τ ), x∗,iτ =

XS(s∗τ ), u
∗,i
τ = US(s∗τ ).

Therefore, we have

wi,max(l, τ) = wmax(l, τ) +
∑

N j∈Up(N i),l∈Lj,out

y∗,jl,τ . (6.24)

Proposition 14. We have st �S s∗τ if and only if siτ �Si s∗,iτ , i = 1, · · · , N .

Considering these, the contracts are given as:

ψi→j =
T−1∧
τ=0

(
(τ = Gt)⇒ (yi→jt ≤ y∗,i→jτ )

)
. (6.25)

This contract synthesis process ensures that there exists at least one local control

policy for each subnetwork such that the contracts are maintained alongside with the
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local specifications. One such local policy is the open-loop control sequence in (6.23),

which can be implemented in a decentralized way. Often other local control policies

also exist from which an optimal one can be selected considering a cost function, as

discussed in the next section.

6.5 Control Synthesis

In this section, we explain how to find controls optimally. The cost function in (6.10)

can be written as:

J :=
N∑
i=1

J i, J i(xi0, µ
i,wi) =

∞∑
t=0

∑
l∈Li,out

γt(xil,t − f il,t). (6.26)

It is worth to note that when the system is in the congestion-free set, fl,t only depends

on the state and control of link l. Thus the decomposition of the cost as (6.26) is

valid. We wish to find an optimal control policy µi for each subnetwork N i such that

its local specification and contracts to downstream neighbors are satisfied:

minimize max
wi

J i((xi0, µ
i,wi))

subject to σi0(ζ i(xi0, µ
i,wi)) |=

(
G[0,∞)Φ

i∧∧
j∈Down(N i) ψ

i→j), ∀wi.

We find controls optimally using a decentralized MPC approach. In this setting,

local controllers do not exchange any information and the pre-designed contracts are

the only global provision. Next, we explain how to extend the decentralizing frame-

work into a simple cooperative MPC algorithm where the local controllers determine

the value of the global clock by exchanging some information.
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6.5.1 Decentralized Model Predictive Control

Given an MPC prediction horizon H, we denote ui,Ht := ui0|t, · · · , uiH|t. The length H

is determined by the user but as explained later, we recommend H > h(Φ). Given

wi,Ht = wi0|t, · · · , wiH−1|t, the H-length prediction of the system state and output are

denoted by xi,Ht = xi0|t, · · · , xiH|t and yi,Ht = yi0|t, · · · , yiH|t, respectively. At each time,

we optimize ui,Ht , implement ui0|t and solve the optimization problem at next time.

The global clock at time t is supposed to be a known value. The MPC optimization

problem at time t is given as follows:

ui,Ht = argmin
H∑
k=0

∑
l∈Li,out

γk(xil,k|t − f il,k|t)

subject to sik−h(Φ)|t ∈ LSR(Φi)

ξi→jk|t |= G[0,H]ψ
i→j, j ∈ Down(N i),

siH−h(Φ)|t ∈ L(s∗τ+H−h(Φ)),

xik+1|t = F (xik|t, u
i
k|t, w

i,max
k|t ),

Gt+k = (τ + k) mod T, k = 0, · · · , H.

(6.27)

There are five lines of constraints that are explained as follows. The first is indicating

that the all the H-length predictions of the extended states are in the language

realization set, hence the specification is not violated in finite time. Due to the MTL

temporal operators, the time window of constraints is shifted by h(Φ) [Sadraddini

and Belta, 2015]. It is worth to note that we require the knowledge of the recent

h(Φ)-length history of the controls and states. For time t = 0, we assume that all the

previous propositions from this history are true [Sadraddini and Belta, 2015]. The

second line stands for the constraints of the contracts for downstream subnetworks.

The third line states that the last predicted extended state has to lie inside the

projection of RCIS Ω on S i, which provides a sufficient condition for establishing

recursive feasibility (see Theorem 11 below). Since the partial ordering �Si has
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equality constraints on controls, the length of the MPC horizon with free decision

variables is H−h(Φ). Therefore, we need H > h(Φ). Otherwise, there exists only one

feasible solution to (6.27). The fourth line is stating that the predictions are computed

using the largest values of disturbances, which due to monotonicity, corresponds to

the worst-case scenario. Thus, the MPC algorithm is robust in the sense that all

constraints are satisfied for all allowable disturbances. The fifth line stands for the

natural evolution of the global clock and the range of indices of predictions.

Theorem 11. The MPC optimization problem (6.27) is recursively feasible in the sense

that if it is feasible at time t and a valid control decision is implemented, then it is

guaranteed to be feasible at time t+ 1.

Proposition 15. The global specification (6.9) is satisfied if (6.27) is recursively feasible

for all subnetworks.

It should be noted that the solutions obtained from MPC are optimal only over

the finite prediction horizon. Therefore, solutions can be suboptimal compared to the

global optimum in (6.11). We also note that contracts can introduce conservativeness

since subnetworks assume maximum allowable disturbances from the upstream neigh-

bors. To mitigate this conservativeness, we desire that the number of subnetworks -

and interconnections - be as small as possible. A very long prediction horizon can also

cause conservativeness since the worst-case values at far future times are considered

in the optimization problem. This issue can be alleviated by using an appropriate

discount factor in the cost function. In the case when the state knowledge is noisy,

the values for states in (6.27) have to be replaced by their upper-bound estimates.

Due to monotonicity, this ensures that the correctness of the specification and the

contracts are maintained for all possible state values. However, one may get infeasi-

bility for (6.27) because of unrealistic state measurements, even though feasibility is



116

guaranteed for the true state values. In this case, one has to relax the constraints.

A less conservative treatment of noisy data may require a probabilistic framework,

which is out of the scope of this chapter.

6.5.2 Cooperative Model Predictive Control

Here we assume that the local controllers are able to communicate with each other. In

order to improve optimality, we introduce a simple modification for the decentralized

MPC algorithm as follows. At each time, the controllers implement (6.27) for all

allowable values of the global clock. Therefore, we define Jopt,i = {Jopt,iτ }τ∈{0,··· ,T−1},

Jopt,i ∈ RT
+, where Jopt,iτ is the optimal cost of MPC for subnetwork N i, i = 1, · · · , N ,

obtained from setting the clock variable Gt to τ . If an MPC optimization problem is

infeasible, we set its cost to∞. Next, we choose the best global clock value as follows:

τ ∗ = min
τ∈{0,··· ,T}

N∑
i=1

Jopt,iτ . (6.28)

Note that recursive feasibility guarantees that for at least one clock variable the sum

of costs is finite. Distributed computation of (6.28) can be accomplished using a

distributed average consensus algorithm [Cortés, 2006], assuming that the controllers

of the subnetworks communicate on a connected graph. Then, each controller imple-

ments the controls which correspond to the minimum cost in the average 1
N

∑N
i=1 J

opt,i.

We note that our cooperative MPC technique is still preliminary and there are many

open directions to improve this approach.
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6.6 Simulation Results

In this section, we present numerical results of applying our methods to the network

shown in Fig. 6·1. Motivated by time scales of real traffic networks, we consider a

time step of 20 seconds in all simulations.

6.6.1 Macroscopic Simulation

We used the model in (8.1), which is “macroscopic” in the sense that it describes the

aggregated vehicular dynamics instead of modeling each vehicle. The specification is

given as in Example 15. For all MPC algorithms, we use H = 11 and γ = 0.5. We

simulate the system for 45 time steps. The total delay accumulated over the network

during this time frame is
∑45

t=0

∑
l∈Lint(xl,t−fl,t). All the computation times are given

for implementations on a dual-core 3.0GHz Macbook Pro. The software for implemen-

tations are available for download in sites.bu.edu/hyness/format-distributed.

In the following implementations, the values for the exogenous demand for the net-

work are drawn from a uniform distribution over L(wmax), with the exception of

links from subnetwork N 1, where we set their exogenous demands to their largest

admissible values.

Open-loop (OL). We implemented the control sequence from (6.23). This con-

trol policy is not traffic-responsive but ensures the satisfaction of the global spec-

ification (6.9). The total accumulated delay was 4786 [vehicles×time-step]. The

implementation does not require any online computation effort or measurement of

the state.

Centralized MPC (CeMPC). We implemented the MPC algorithm (6.27) for

the complete network N . We do not need the contract constraints as the network

is undivided in this setup. Therefore, there is no conservativeness induced by the
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contracts. The accumulated delay was 2878, which indicates about 40% decrease

compared to the OL policy. However, the computation time for each time step is

very large (see Table 6.1), which indicates that CeMPC is not suitable for real time

traffic management.

Decentralized MPC (DeMPC). Here we implemented the MPC algorithm

(6.27) for each subnetwork individually. The accumulated delay was 3216, which is

a bit larger than the one for the CeMPC but still significantly smaller than the one

for the OL policy. The computation times were less than a second (see Table 6.1).

Therefore, DeMPC is appropriate for real time traffic management.

Cooperative MPC (CoMPC). Here we implemented the method from Sec.

6.5.2. During the simulation, the natural evolution of the global clock was overridden

for 7 times, mainly in order to prioritize the heavy traffic in subnetwork N 1. The

accumulated delay was 3112, which is slightly smaller than the one for DeMPC. The

computation times are longer due to solving multiple MILPs (T = 6 in this case),

but the computations can be performed in parallel.

It is observed that the specification is satisfied by each implementation (which is

also implied by the the fact that all the MPC problems were feasible). The trajectories

always remain in the congestion-free set and all the sub-specifications in Example 13

are always met. For instance, the traffic lights corresponding to the sub-specifications

ϕ1, ϕ2, and the vehicular volumes over time are shown in Fig. 6·4 (using DeMPC with

all exogenous demands set to their maximum). It is also observed that the number of

vehicles on the eastern bridge never exceeds 100 (sub-specification ϕ3). For the only

case when the volume on link 73 exceeded 5, its traffic light turned green immediately

(sub-specification ϕ4).
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Table 6.1: Computation Time per Time Step and Accumulated Delay
for Different Control Policies

OL CeMPC DeMPC CoMPC
Max. Comp. Time (s) - 1762 0.93 7.09
Avg. Comp. Time (s) - 86.7 0.17 1.21
Accumulated Delay 4786 2878 3216 3112

Figure 6·3: Simulation Results

6.6.2 Microscopic Simulation

Here we show some preliminary results on implementing our methods on microscopic

traffic simulators. We used the PTV VISSIM4 microscopic traffic simulator, which

is a widely used, highly realistic simulator that incorporates many aspects of traffic

such as driver models, vehicle classes, priorities, conflicts, etc. A screenshot of the

VISSIM implementation of the traffic network in Fig. 6·1 is shown in Fig. 6·5. The

simulator was used in a closed-loop setup: the controller has access to the traffic

volumes and the traffic light settings via a MATLAB interface. The length of each

link is set to 300 meters. The maximal speed of the vehicles was set to 15 m/s with

an acceleration profile of a normal passenger car. The sample time is 20 seconds. We

simulate the system for 15 minutes (equivalent to 45 time steps). We observe that a

naive (centralized) MPC controller with no feasibility guarantees leads to congestion

in the network after about 25 time steps. However, using the methods in this chapter

we were able to to avoid congestion and satisfy all the specifications. The results

are shown in Fig. 6·4. The video of our VISSIM implementation is included in

sites.bu.edu/hyness/format-distributed.

4http://vision-traffic.ptvgroup.com/products/ptv-vissim

http://vision-traffic.ptvgroup.com/products/ptv-vissim
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Figure 6·4: Macroscopic Simulation Trajectories

Figure 6·5: VISSIM Implementation

The macroscopic model (8.1) used for control synthesis does not necessarily cap-

ture all the behaviors in the VISSIM model. Therefore, we are unable to formally

guarantee that the specification is always satisfied by the VISSIM model. However,

in our simulations we observed that the VISSIM simulations always satisfy the spec-

ification using the controls we found for (8.1). We leave further investigation of the

relation between macroscopic and microscopic models from a formal methods per-

spective to our future work.

6.7 Dynamic Contracts

We can find a library of contracts instead of using a fixed table of contracts, and

switch between in reaction to real-time conditions them to obtain a better optimum.
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N 1 N 2 N 3

N 4

N 1 N 3

N 2

N 4

Figure 6·6: Example network N partitioned into four sub-networks
N i, i = 1, · · · , 4. Contract obligations from (6.7.2) are depicted on
the right. Solid arrows indicate an obligation from one network to an
adjacent sub-network to limit incoming vehicular flow. Dashed arrows
represent recursive feasibility obligations from a sub-network to its fu-
ture self.

We follow a compositional approach. The details are in [Kim et al., 2017c]. Each

individual sub-network must first be “mined” for contracts over a range of demand

severity levels and different local scenarios. The mined contracts are merged into a

finite directed graph that serves as a high-level coordinator. Each node corresponds

with the contract constraints imposed on each individual sub-network. Unsafe regions

of the graph are scenarios where sub-networks’ promises to each other are inconsis-

tent. The coordinator graph contains edges only when a hand-off between contracts

maintains recursive feasibility. A running example of a mixed freeway-urban net-

work is used throughout this chapter. Simulations show a reduction in overall delay

with dynamic contracts and that recursive feasibility is maintained when contract

transitions occur.

6.7.1 Motivating Example

Consider a network N depicted in (6·6) which consists of sub-networks N i, i =

1, · · · , 4. Sub-network N 4 represents a high capacity freeway while the others are
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urban areas. All sub-networks are interconnected via on(off)-ramps or urban roads.

At each urban intersection, 50% of the vehicles proceed straight, 20% turn left,

and 30% turns into an un-modeled external environment (e.g., parking). We have

ql = 15, cl = 40 for urban roads, ql = 60, cl = 25 for freeways and ql = 30, cl = 15 for

ramps. For all entry links to the network, let dl[t] ∈ [0, 1
4
ql], t ∈ N 5.

We aim for multiple control objectives. First, the network must remain in the

congestion-free region ψ at all times. Second, at each urban intersection traffic lights

signalizing vertical and horizontal flows become simultaneously red infinitely often,

allowing pedestrians to pass through the intersection in any direction and making the

congestion-free specification harder to accomplish.

φ = G[0,∞)

( ∧
(l,k)∈A

ψ ∧ F[0,∞)(ul = 0 ∧ uk = 0)
)
. (6.29)

6.7.2 Interconnections and Contracts

The distributed MPC scheme contains a circular dependency because each sub-

network is unaware of neighboring networks’ planned actions. Each sub-network

needs to promise neighboring sub-networks that they will satisfy each other’s assump-

tions, but the feasibility of such a promise depends on the actions of one’s neighbors.

Assume-guarantee contracts are MPC constraints that break this dependency.

Definition 31 (Assume-Guarantee Contract). Network N i’s assume-guarantee con-

tract Ci along time interval [kT, (k + 1)T ] consists of

• Assumption φia(x
i
∗[kT ], di∗[kT, (k + 1)T )) on the incoming demand and vehicles

initially in the network:

5The full, detailed, parameter valuations of the network, code and simulation results of this
chapter are publicly available in http://blogs.bu.edu/sadra/research/dynamic-contracts.
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∧
l∈Li

(
xl[kT ] ≤ xl∗[kT ]

)
(6.30)

∧
(k+1)T−1∧
t=kT

( ∧
l∈Liin

(
dl[t] ≤ dl∗[t]

) )
(6.31)

• Guarantee φig(x
i
∗[kT + 1, (k + 1)T ], yi∗[kT + 1, (k + 1)T ]) on the terminal state

and output trajectory:

∧
l∈Li

(
xl[(k + 1)T ] ≤ xl∗[(k + 1)T ]

)
(6.32)

∧
(k+1)T∧
t=kT

( ∧
l∈Liout

(
yl[t] ≤ yl∗[t]

))
(6.33)

The contract Ci is characterized by a set of parameters: the initial state x∗[kT ],

external demand d∗[kT, (k+ 1)T ), terminal state x∗[(k+ 1)T ], and output trajectory

y∗[kT, (k + 1)T ]) over output links. Sub-network N i’s assumption component states

conditions over local and incoming links Li and Liin. The output guarantee is viewed

as a signal y∗[kT + 1, (k + 1)T ]) that upper bounds output trajectories of y[kT +

1, (k + 1)T ]) on links in Liout.

Definition 32 (Contract Satisfaction). A sub-network satisfies an assume-guarantee

contract at time kT if for all x[kT ] and d[kT, (k + 1)T ) satisfying (6.30) and (6.31)

respectively, a control sequence u[kT, (k + 1)T ) exists such that N i remains in the

local freeflow region ψi, and both the guarantee φig and MTL requirement φi are

satisfied at kT .

Contract satisfaction for all assumption satisfying scenarios x[kT ] and d[kT, (k+

1)T ) is difficult to certify for general non-linear dynamics. However, within the con-

gestion free region ψ the dynamics exhibit a monotonicity property, where a partial
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ordering with respect to state trajectories is preserved, and the initial state x∗[kT ]

and demand di∗[kT, (k + 1)T ) jointly yield the most adversarial environment. An en-

vironment that satisfies φia cannot violate the guarantee if x∗[kT ] and di∗[kT, (k+1)T )

doesn’t violate the assumption [Kim et al., 2016]. Thus, synthesizing a satisfying con-

trol sequence ui∗[kT, (k+ 1)T ) for environmental scenario x∗[kT ] and d∗[kT, (k+ 1)T )

such that the system satisfies the guarantees and remains congestion free also ensures

that the control sequence will be satisfactory under more benign scenarios. A set of

contracts is consistent if all sub-network assumptions are implied by the guarantees.

Definition 33 (Assume-Guarantee Parameter Consistency). A set of contracts are

consistent if if for all N i, input links l ∈ Liin and times t ∈ [kT, (k + 1)T )

∑
k∈Llup

β(l, k)yk∗ [t] ≤ dl∗[t]. (6.34)

6.7.3 Recursive Feasibility with Fixed Contracts

Recursive feasibility can be viewed as a network making a promise to its future self

that all future constraints will remain feasible. Recursive feasibility has two compo-

nents, corresponding to the specification φig constraint and the contract constraint

(6.33). Feasibility of the φig constraint at the kT -th time step has already been es-

tablished via the initial state condition (6.30).

Let contract Ci is be periodically every T steps with fixed parameters. Consider

two different MPC executions at times kT and (k + 1)T . The guarantee constraint

φig along the interval [(k + 1)T, (k + 2)T ) is feasible when (6.30) is satisfied at time

(k + 1)T . The MPC algorithm executing at time kT imposes the terminal state

guarantee x[(k+ 1)T ] ≤ x∗[(k+ 1)T ], which implies that the initial state assumption

at (k + 1)T with identical contract Ci is satisfied if:
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∧
l∈Li

xl∗[(k + 1)T ] ≤ xl∗[(k + 1)T ]. (6.35)

If Ci satisfies (6.35) then it is said to be a recursively feasible contract. The final

MPC problem for each sub-network consists of the following constraints:

Problem 8 (Distributed MPC). Under the assumption that input demand satisfies

(6.31), Each sub-network N i computes a local control sequence u[kT, (k + 1)T ):

argmin
u[kT,(k+1)T )

(k+1)T∑
t=kT

∑
l∈L

(
xl[t]− f l[t]

)
s.t. (x[kT, (k + 1)T ], u[kT, (k + 1)T )) |= φi

Guarantee (6.33) to adjacent networks
Terminal State (6.32), Dynamics constraints

Assumption φia is encoded in the dynamics.

Proposition 16 ( Infinite Horizon Spec. Satisfaction). If each network N i satisfies its

assume-guarantee contract, each assume-guarantee contract Ci is recursively feasible,

and the global initial state x[0] satisfies each initial state (6.30) assumption, then the

distributed MPC algorithm satisfies the global specification.

6.7.4 Dynamic Contracts

(31) introduced contracts that are uniquely parametrized by x∗[kT ], d∗[kT, (k+1)T ),

x∗[(k + 1)T ], and y∗[kT, (k + 1)T ), which do not change over many MPC horizons.

Fixed contract parameters may lead to conservative guarantees if the network experi-

ences less demand than expected and dl[kT, (k+1)T )� dl∗[kT, (k+1)T ) elementwise

in (6.31). because conservative assumptions prevent aggressive responses to benign

real-time conditions.

In general, a sub-network N i can satisfy a collection of mi assume-guarantee

contracts,
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P i = {Ci(pi1), . . . , Ci(pimi)}. (6.36)

each associated with different parameters (attributes)

pi[kT, (k + 1)T ] =
(
xi∗[kT ], di∗[kT, (k + 1)T ),

xi∗[(k + 1)T ], yi∗[kT, (k + 1)T )ui∗[kT, (k + 1)T ), J i∗

)
where pi is used for notational compactness in (6.36). (6.7.6) provides a method to

generate such a collection. Optimal control sequence ui∗[kT, (k+1)T ) and an induced

delay J i∗ are also computed and stored during the contract generation process.

Preserving formal guarantees restricts how contract parameters may change at

runtime. First, contracts parameters must always be consistent in the sense of (33).

Second, the notion of recursive feasibility needs to be modified to accommodate a

changing set of requirements.

Concretely, a contract coordinator is a transition system with state space P =∏N
i=1Pi =

∏N
i=1{Ci(pi1), . . . , Ci(pimi)} designed to ensure that these two properties are

satisfied. Every coordinator transition corresponds to a potential change in contract

parameters for each network and may execute every T time steps. After a transition,

each sub-network is notified of the contract it must satisfy.

Consistent Contract Parameters

A coordinator state p ∈ P is a tuple (p1
k1
, . . . , pNkN ) where each network N i picks a

single contract C(piki) it would like to satisfy. Not all elements of this space satisfy

the contract consistency requirement in (33). For instance in (6·6) satisfaction of

N 1’s assumption is determined by N 2 and N 4’s guarantees. If contract parameters

are such that N 2,N 4’s guarantees do not jointly imply assumption N 1’s assumption,
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then these contract parameters are inconsistent.

A subset Pv ⊆ P of the parameter space that corresponds to all consistent

network-wide parameters. Set Pv is enumerated via a depth first traversal over a tree

with depth N and branching factors mi. The traversal aggressively prunes branches

of the contract space as soon as a contract inconsistency parameter is identified.

Contract Transitions and Recursive Feasibility

A contract transition is valid when each sub-network can promise its future self the

ability to satisfy the new contract via a transition from the old contract. Given two

consistent contract parameters p, p̂ ∈ Pv where p is for use over [kT, (k + 1)T ] and

p̂ is for use over [(k + 1)T, (k + 2)T ], a switch from p to p̂ is valid if the following

element-wise inequality holds:

∧
l∈L

xl∗[(k + 1)T ] ≤ x̂l∗[(k + 1)T ]. (6.37)

The left side is the terminal state guarantee from p and the right is the initial state

assumption of p̂. Recursive feasibility as in (6.7.3) is a special case when p = p̂.

We define the contract parameters Viable Graph (VG) as a directed graph (Pv, Ev),

where Pv is the set of nodes, and Ev ⊆ Pv×Pv is the set of edges such that ∀(p, p̂) ∈ Ev,

the switch from p to p̂ is valid. We denote Epv = {(p, p̂)|(p, p̂) ∈ Ev}. A node p is a

dead-end if Epv = ∅. If no dead-end is reached, then there always exists a consistent

contract with feasible transition options to other contracts, which by construction

implies the following statement.

Proposition 17. Given a infinite-time contract parameter sequence p0, p1, · · · , where

pk is used for control synthesis in the time interval [kT, (k + 1)T ], the specification

(6.29) is satisfied if (pk, pk+1) ∈ Ev and pk ∈ Pv,∀k ∈ N.
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6.7.5 Optimal Contract Coordination

The recursive feasibility property and contract consistency require that no dead-end

node in VG is reached. By recursively removing the dead-end nodes and the edges

leading to them, we obtain a fixed point which characterizes the viable kernel graph

(VKG) (Pv,κ, Tv,κ), where Pv,κ ⊂ Pv and Tv,κ ⊆ Pv,κ × Pv,κ with the extra property

that ∀p ∈ Pv,κ, Epv,κ 6= ∅. Once a parameter contract of a node in VKG is chosen, there

always exist a feasible handover of the contract to another node in VKG, establishing

infinite-time recursive feasibility and consistency.

Each contract pi corresponds to a cost J i∗ for network N i, which is the delay

induced if control sequence ui∗[kT, (k+ 1)T ) is applied starting from xi∗[kT ] under the

demand assumptions di∗[kT, (k + 1)T ). It follows from monotonicity properties that

J i∗ is a upper-bound for possible costs in real-time implementation. Given a contract

parameter p = (p1
k1
, · · · , pNkN ), the sum of associated contract costs is

c(p) :=
N∑
i=1

J i∗(pki). (6.38)

Now we determine which contract parameter from VKG nodes to choose at each time

kT, k ∈ N. In order to aim for optimality, we choose the contract parameter for

which the infinite-horizon cost c∞(p) =
∑∞

k=0 α
kc(pk) is minimal, where p = p0, and

α ∈ (0, 1) is a discount factor to make the cost properly defined. Denote the optimum

cost to go from p by c∗∞ which follows from Bellman’s equation [Bertsekas, 1995]:

c∗∞(p) = c(p) + α min
p′∈Epv,κ

(J∗∞(p′)) (6.39)

In order to find c∗∞(p), p ∈ Pv,κ, (6.39) is cast as a linear program. Finally, at time

kT we choose the optimal contract parameter p∗ ∈ Px[KT ] with minimum c∗∞(p).
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6.7.6 Contract Mining

A delicate tradeoff exists between conservative assumptions which can accommodate

an influx of vehicles and aggressive guarantees which quickly dissipate vehicles in the

network. We present a heuristic to generate a set of assume-guarantee pairs for each

sub-network.

Given a fixed assumption and N i, a miner is a bounded horizon optimization al-

gorithm that computes a control trajectory that induces minimal guarantees. Guar-

antee parameters xi∗[(k + 1)T ], yi∗[kT, (k + 1)T ) are minimal if contract satisfaction

as in (32) is infeasible for any smaller guarantee pair such that x̂i∗[kT ] ≤ xi∗[kT ] and

ŷi∗[kT, (k + 1)T ) ≤ yi∗[kT, (k + 1)T ) with element-wise inequality. The miner’s opti-

mization objective can be any monotone function of X × U ; we opt to minimize a

combination of the l1 and l∞ norms. After mining, a guarantee is propagated into

an assumption for adjacent networks via (6.34) with the equality is replaced with an

inequality, and the mining continues.

(1) provides pseudocode which generates MaxIter guarantees for every sub-network.

The contract sets are initially empty. Infeasibility of the mining algorithm triggers a

multiplicative decrease in the initial conditions and disturbance by a factor γ ∈ (0, 1)

until the contract is satisfied. Propagation can be visualized over the bottom of (6·6)

where inter-network promises (solid edges) and a network’s recursive feasibility con-

straint (dashed edges) are both updated. Both contract parameters and the control

sequence are saved.

6.7.7 example

Example 16. (6·6)’s network is used to evaluate the efficacy of the dynamic contracts

system. (1) is used to generate a set of 25 contract parameters for each sub-network.
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Algorithm 1 Guarantee Mining Algorithm
1: Set N = Number of Sub-networks
2: for all i = 1, . . . , MaxIter do
3: for all i ∈ {1, . . . , N} do
4: while True do
5: Feas, x[·], u[·], y[·]= mine(N i,x[0], d[·])
6: if Feas then
7: Break

8: x[0] := γx[0], d[·] := γd[·]
9: Add to N is contract set

10: Propagate Guarantee

Table 6.2: Accumulated Delays for Different Control Methods

Networks Experiencing Dynamic Contracts Fixed Contracts Dynamic Contracts
Full Demand Fixed Control MPC MPC

All 784 753 747
(1,4) 354 381 346
(2,4) 248 244 226

(1,2,4) 513 513 495
(1,2,3) 670 646 635
(1,2) 405 398 394
(1,3) 498 507 460
(1) 238 249 229
(2) 154 122 104
(4) 115 86 85

There are |Pv| = 1363 consistent contract parameters, of which 664 were members

of the viability kernel Pv,κ. All optimization problems were posed and solved using

Gurobi’s mixed integer linear program solver [Gurobi Optimization, 2016]. We used

the method in (6.7.4) to change contract parameters as a feedback of system state

every T time steps. We simulated the network for 30 time steps (5 rounds of contract

transitions). The satisfaction of the specification was implicitly implied by the fact

that the MPC optimization problem was feasible at all times. Sample results are

illustrated in (6·7).

Eq. (6.2) shows the accumulated delay for different network conditions and con-

trol architectures. The first column shows the subset of networks that experience

a fully adversarial demand, e.g. the (1, 3) column means that N 1,N 3 experience

the maximum number of incoming vehicles and N 2,N 4 experience no exogenous de-
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Figure 6·7: Example 16: [Top] State over Time. [Bottom] The traffic
lights history for the links in South-Eastern Intersection of N 1. The
lower color is for the light corresponding to the link in North-South
direction and the upper one stands for the link in East-West direction.
The pedestrian liveness requirement (both lights simultaneously getting
red) is satisfied in each round of contract transitions (shown by thick
vertical block lines).

mand. As expected, the cumulative delay decreases when the network load decreases.

The fixed controller executes a control sequence without state feedback in the interval

(kT, (k+1)T ), but permits contract switches every T steps. The MPC controller with

fixed contracts achieves similar objective values, but is not strictly better than the

fixed control with dynamic contracts, suggesting that contract constraints are a major

impediment for achieving a lower delay. The dynamic contracts with MPC column

outperforms both other control strategies. The performance gain is greater when the

exogenous demand has an asymmetric profile, when dynamic contracts assign higher

priority to sub-networks experiencing higher demand.



Chapter 7

Robust Distributed Set-Invariance

Centralized control of large-scale networked systems requires all the subsystems to

communicate with a central coordinator, an entity which has to promptly compute

control decisions for all subsystems, making centralized control impractical. Dis-

tributed control policies - where the computation and communication loads of sub-

systems are limited - are preferred in practice.

In this chapter, we consider a linear system subject to additive disturbances. Poly-

topic set-invariance is the main objective. It is well-known that all invariance-inducing

controllers may not be described using a finite number of parameters [Blanchini,

1999]. We use the framework in [Raković et al., 2007] to characterize convex sets of

parameters guaranteeing set-invariance. We propose a method to impose structural

constraints on the parameters. Unlike the traditional approaches discussed earlier,

we require that subsystems act as relay nodes while passing information in the net-

work. The delay of such relaying processes is taken into account in the design of the

controller. In this chapter, we establish the following two main results:

• Given a directed communication graph describing the structural constraints of

the network, our method designs control policies using linear programming. The

number of constraints and variables scale polynomially with the problem size.

• When structural constraints are not given, we find a minimal communication

132
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graph - in the sense that a weighted sum of (one-way) communication links is

minimized - for which a distributed invariance-inducing control policy exists.

The problem can be both solved exactly using a mixed-integer linear program

or approximately solved using linear-programming relaxations.

7.1 Problem Formulation

A networked control system S is defined as a set of interconnected subsystems. The

discrete-time evolution of s ∈ S is given as:

xs[t+ 1] = Asxs[t] +Bsus[t] + ws[t] +
∑

s′∈S,s′ 6=s

ζs′s[t], (7.1a)

ζs′s[t] = As′sxs′ [t] +Bs′sus′ [t], (7.1b)

where xs[t] ∈ Rns , us[t] ∈ Rms , ws[t] ∈ Rns , are the state, control and additive

disturbance of system s, respectively, and ζs′s[t] is the dynamical influence of s′ on s

at time t ∈ N. Matrices As ∈ Rns×ns , Bs ∈ Rns×ms are constant and correspond to

the internal dynamics of s, while As′s ∈ Rns×ns′ , Bs′s ∈ Rns×ms′ are constant matrices

characterizing the influence of s′ on s. Given a particular ordering of the subsystems

in S as (s1, s2, · · · , sN), where N = |S|, the states, controls and disturbances of S are

denoted by x, u, and w, respectively, where:

x =

 xs1
...
xsN

 , u =

 us1
...
usN

 , w =

 ws1
...

wsN

 , (7.2)
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We have x ∈ Rn, u ∈ Rm, w ∈ Rn, where

n =
∑
s∈S

ns,m =
∑
s∈S

ms. (7.3)

The evolution of S is written in the following compact form:

x[t+ 1] = Ax[t] +Bu[t] + w[t], (7.4)

where A ∈ Rn×n, B ∈ Rn×m are unambiguously constructed from (7.1) and (7.2).

Definition 34. A directed communication graph is defined as the tuple G = (S,L),

where S (the set of subsystems) is the set of vertices and L ⊆ S × S is a set of

ordered pairs. Subsystem s′ is able to transmit information to subsystem s if and

only if (s′, s) ∈ L.

Given G = (S,L), we define the kth power of G as Gk = (S,Lk), k ∈ N+, such

that (s, s′) ∈ Lk if and only if there exists a walk from s to s′ on G with length less

than or equal to k. Note that G1 = G. As a special case for k = 0, we define G0 and

L0 such that (s, s) ∈ L0, ∀s ∈ S (self-loops). In other words, every subsystem has

access to its own information.

Assumption 5. At time t ∈ N, system s knows xs′ [t− k+ 1] and us′ [t− k] if and only

if (s′, s) ∈ Lk.

Assumption 5 requires that subsystems act as relay nodes while passing informa-

tion in the network. Each relay node induces a one time step delay. Assumption

5 is not restrictive in most applications. We require each subsystem to have some

additional memory to store the history of state and controls of its own and some other

subsystems. Fortunately, as it will be made clear later, only a finite (usually small)
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number of recent states and controls is sufficient for our purpose. In this chapter,

every link beyond an immediate neighbor corresponds to one unit time delay. More

complex delay behavior can be accommodated in our framework by adding virtual

relaying nodes (see, e.g., [Lamperski and Lessard, 2015]).

We are given the following polytopes:

X := {x|Hxx ≤ hx} , (7.5a)

U := {u|Huu ≤ hu} , (7.5b)

W := {w|Huw ≤ hw} , (7.5c)

where Hx ∈ Rqx×n, Hu ∈ Rqu×m, Hw ∈ Rqw×n, and hx ∈ Rqx
+ , hu ∈ Rqu

+ , hw ∈ Rqw
+ .

Note that we assume X,U, and W contain the origin.

Definition 35 (Centralized Policy). A centralized control policy is defined as µc :

Rn → Rm, where

u[t] = µc(x[t]). (7.6)

Definition 36 (Distributed Policy). Given a networked control system S with com-

munication graph G, and a positive integer K ≥ 1, a distributed control strategy of

memory K is defined as a set of functions µd := {µs}s∈S such that for all t ≥ K:

us[t] = µs

( {
{xs′ [t− k + 1]}(s′,s)∈Lk ,

{us′ [t− k]}(s′,s)∈Lk
}
k∈{1,··· ,K}

)
,

(7.7)

where µs : Rηs → Rms , ηs =
∑K

k=1

∑
(s′,s)∈Lk−1 ns′ +

∑K
k=1

∑
(s′,s)∈Lk ms′ .

Definition 36 does not explain how to compute controls for t < K. We shift the

start time to K and make the following assumption.
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Assumption 6. System (9.1) is initialized at time t = K with x[K] = 0, x[k] =

0, u[k] = 0,∀k ∈ [0, K − 1].

Assuming the initial condition to be zero is restrictive but simplifies our analysis.

We can drop Assumption 6 at the expense of adding an initial coordination between

the subsystems. The details are explained in 7.2.3. The second part of Assumption

6 is not restrictive as we can always shift the start of time to K and assign arbitrary

values to the past.

Definition 37 (Correctness). Given a networked control system S as (7.1), (9.1),

polytypic sets X, U, W as (9.9), a communication graph G, and a positive integer

K, a (distributed) control µ (of memory K) is correct if for all allowable sequences

w[K], w[K + 1], · · · , w[t] ∈W,∀t ≥ K, we have x[t] ∈ X and u[t] ∈ U,∀t ∈ N.

Definition 38 (Margin of Correctness). Given a correct control policy µ, the margin

of correctness ρ∗ ∈ [0, 1] is defined as the maximum value of ρ for which µ remains

correct when X← (1− ρ)X and U← (1− ρ)U.

The margin of correctness has a straightforward interpretation. If ρ∗ = 0, it

implies that correctness is lost if X or U are shrunk around the origin. If ρ∗ = 1, it

indicates that the state and controls can be always zero, which essentially requires

W = {0}. More complicated definitions for margin of correctness are also possible.

For instance, one may consider different scaling variables for components in X and U

and define the margin as a weighted sum of them.

7.1.1 Problem Statement

We formulate two problems. In both, we are given a networked control system S as

(7.1), (9.1), polytypic sets X, U, W as (9.9), and a positive integer K. In practice,

K is a design parameter which determines the complexity of the controller. We
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usually start from small values of K and make it larger until feasibility/satisfactory

performance is reached.

Problem 9 (Optimal Strategy Design). Given a communication graph G, design a

correct distributed control policy µ of memory K with the maximum margin of cor-

rectness ρ∗.

Problem 10 (Optimal Graph Design). Find a communication graph G = (S,L) for

which a correct control policy exists such that the following cost function is minimized:

J(G) =
∑
s∈S

∑
s′∈S

cs′sI ((s′, s) ∈ L) , (7.8)

where cs′s ∈ Rn
+ is the cost of establishment of one-way communication link from s′

to s, and I is the indicator function that designates 1 (respectively, 0) if its argument

is true (respectively, false).

7.2 Parameterized Set-Invariance

In this section, we present the family of parameterized controllers in [Raković et al.,

2007]. We do not, yet, impose structural constraints. The key idea of this chapter is

outlined in Sec. 7.2.3, where we show that a memoryless piecewise affine invariance-

inducing control policy can be converted to a linear controller with memory, paving

the path to impose structural requirements in Sec. 7.3.

7.2.1 Convex Parameterization

Lemma 3. [Raković et al., 2007] Let Θ := (θ0, θ1, · · · , θK−1), where θk ∈ Rm×n, k =

0, · · · , K − 1, be a m × nK matrix of parameters such that the following condition
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holds:

AK + AK−1Bθ0 + · · ·+ ABθK−2 +BθK−1 = 0. (7.9)

Define the following set:

ΩΘ := (AK−1 + AK−2Bθ0 + · · ·+BθK−2)W
⊕(AK−2 + AK−3Bθ0 + · · ·+BθK−3)W
⊕ · · · ⊕ (A+Bθ0)W⊕W

(7.10)

Then there exists µ : Rn → Rm such that

∀x ∈ ΩΘ, {Ax+Bµ(x)} ⊕W ⊆ ΩΘ.

Proof. For all x ∈ ΩΘ, there exists wK−1, wK−2, · · · , w0 ∈W such that

x = (AK−1 + AK−2Bθ0 + · · ·+BθK−2)wK−1
x +

(AK−2 + AK−3Bθ0 + · · ·+BθK−3)wK−2
x

+ · · ·+ (A+Bθ0)w1
x + w0

x.
(7.11)

Now let the µc(x) be the following control input:

µc(x) = θK−1w
K−1
x + θK−2w

K−2
x + · · ·+ θ0w

0
x. (7.12)

Denote the new disturbance hitting system by w+. The subsequent state is

x+ = Ax+Bµc(x) + w+ =
(AK + AK−1Bθ0 + · · ·+BθK−1)wK−1

x

+(AK−1 + AK−3Bθ0 + · · ·+BθK−2)wK−2
x

+ · · ·+ (A+Bθ0)w0
x + w+.

(7.13)
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Substituting (7.9) in (7.13) results in:

x+ = (AK−1 + AK−2Bθ0 + · · ·+BθK−2)wK−2
x

+(AK−2 + AK−3Bθ0 + · · ·+BθK−2)wK−3
x

+ · · ·+ (A+Bθ0)w0
x + w+.

(7.14)

A quick inspection of (7.10) and (7.14) verifies x+ ∈ ΩΘ.

Notice that (7.9) is not restrictive since Θ is non-empty for controllable (A,B)

and K greater than its controllability index. The set ΩΘ is a robust control invariant

(RCI) set. Following (7.12), the set of all possible controls is

ΨΘ :=
K−1⊕
k=0

θkW. (7.15)

In order to have a correct control policy, we require ΩΘ ⊆ X and ΨΘ ⊆ U.

Lemma 4. [Raković et al., 2007] The set of parameters Θ, α ∈ R+, for which ΩΘ ⊆ αX

and ΨΘ ⊆ αU is convex.

Proof. The proof is based on an extension of Farkas’s Lemma: Given sets S = {s ∈

Rn|Hss ≤ hs}, and Y ⊂ {y ∈ Rq|Hyy ≤ hy}, and matrices Li ∈ Rq×n, i = 1, · · · , κ,

then
⊕κ

i=1 LiS ⊆ αY, is equivalent to the following set of constraints:

ZiHs = HyLi, i = 1, · · · , κ,
κ∑
i=1

Zihs ≤ αhy, (7.16)

where Zi ∈ Rq×n, i = 1, · · · , κ, are appropriately sized matrices with non-negative

entries. Convexity follows from the linearity of the constraints.

Remark 4. The family of RCI sets introduced in [Raković et al., 2007] is not necessarily

equivalent to the set of all RCI sets. In particular, there is no guarantee that one

can find the maximal RCI set using this approach, which is not surprising as the
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problem of finding the maximal RCI set is not decidable, in general [Blanchini, 1999].

Nevertheless, the set of RCI sets in [Raković et al., 2007] is quite rich as they are

generated using piecewise affine feedback laws rather than the much more limited

class of linear control laws.

7.2.2 Centralized Policy

Given Θ, the map from x to u requires finding values for wK−1
x , · · · , w0

x, subject to

(7.11). This is accomplished by solving a linear/quadratic program. A centralized

policy can be constructed as:

u[t] = µc(x[t]) = arg min
u

π(u)

s. t. (7.11), (7.12), wkx ∈W,
k = 0, · · · , K − 1,

(7.17)

where π : Rm → R is a user-defined convex linear/quadratic cost function. It is

well-known that µc becomes a piecewise affine function.

Remark 5. An alternative way to make a set-invariance control policy distributed is

using the state-of-the-art distributed convex optimization techniques to solve (7.17),

such as alternating direction method of multipliers (ADMM) [Boyd et al., 2011].

However, a substantial communication and computation effort is required to perform

the iterations in ADMM [Summers and Lygeros, 2012].

7.2.3 Linear Delay Policy

The following result states that any memoryless piecewise affine policy obtained from

(7.17) can be converted into a linear policy with memory K.

Theorem 12. Let Θ such that ΩΘ ⊆ X and ΨΘ ⊆ U. Then a control policy in which
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control decisions for t ≥ K are given as:

u[t] = θK−1w[t−K] + θK−2w[t−K + 1]
+ · · ·+ θ0w[t− 1]

(7.18)

is correct if the following condition holds:

x[K] = (AK−1 + AK−2Bθ0 + · · ·+BθK−2)w[0]+
(AK−2 + AK−3Bθ0 + · · ·+BθK−3)w[1]
+ · · ·+ (A+Bθ0)w[K − 2] + w[K − 1].

(7.19)

Proof. We prove correctness by showing that

x[t] = (AK−1 + AK−2Bθ0 + · · ·+BθK−2)w[t−K]
+(AK−2 + AK−3Bθ0 + · · ·+BθK−3)w[t−K + 1]
+ · · ·+ (A+Bθ0)w[t− 2] + w[t− 1].

(7.20)

for all t ≥ K. We prove by induction. For t = K, the statement is assumed true as

(7.19). We prove the inductive step using (7.9) to arrive in:

x[t+ 1] = Ax[t] +Bu[t] + w[t]
= (AK−1 + AK−2Bθ0 + · · ·+BθK−2)w[t−K + 1]
+(AK−2 + AK−3Bθ0 + · · ·+BθK−3)w[t−K + 2]
+ · · ·+ (A+Bθ0)w[t− 1] + w[t].

It follows from (7.10) and (7.12) that x[t] ∈ ΩΘ, u[t] ∈ ΨΘ,∀t ≥ K, and the proof is

complete.

Eq. (7.18) is a linear policy based on disturbances. However, disturbances are not

assumed to be directly measurable. Using (9.1), we can replace disturbances by state
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and controls to obtain a more useful form of (7.18):

u[t] = (−θK−1A)x[t−K]
+(θK−1 − θK−2A)x[t−K + 1]
+(θK−2 − θK−3A)x[t−K + 2]
+ · · ·+ (θ1 − θ0A)x[t− 1] + θ0x[t]
−
(
θK−1Bu[t−K] + θK−2Bu[t−K + 1]

+ · · ·+ θ0Bu[t− 1]
)
.

(7.21)

Since all zeros is a trivial solution to (7.19), a simple way to make (7.19) true is

holding Assumption 6. For any initial condition x[K] ∈ ΩΘ, we can find hypothetical

values for w[0], w[1], · · · , w[K−1] such that (7.19) holds by solving a linear program.

However, solving such a linear program may require a central entity. We may use

distributed linear program solvers (see Remark 5) to accomplish this task. Therefore,

Assumption 6 is relaxable given arbitrary initial conditions, as long as they lie in

the RCI set. Note that if the initial condition is outside of the (maximal) RCI set,

satisfying the set-invariance objective is impossible.

7.3 Control with Structural Constraints

Here we provide the solution to Problem 1. We impose structural requirements on

(7.21) based on Assumption 5. We define the following sets of matrices:

Sx ((S,L)) :=
{
G ∈ Rm×n

∣∣u[i] ∈ s, x[j] ∈ s′,

(s′, s) 6∈ L ⇒ G[i,j] = 0
}
,

(7.22a)

Su ((S,L)) :=
{
G ∈ Rm×n

∣∣u[i] ∈ s, u[j] ∈ s′,

(s′, s) 6∈ L ⇒ G[i,j] = 0
}
,

(7.22b)

where x[i] ∈ s (u[i] ∈ s) is interpreted as whether i’th component of x (u) belongs to

subsystem s. Sets in (7.22) are convex. The coefficients that relate a component of
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u[t] in (7.21) to a component of x[t− k + 1], u[t−K], k = 1, · · · , K, has to be zero if

it violates Assumption 5, which is formally stated as follows:



θK−1A ∈ Sx(GK+1)
θK−1 − θK−2A ∈ Sx(GK)
...
θ1 − θ0A ∈ Sx(G2)
θ0 ∈ Sx(G1)

,


θK−1B ∈ Su(GK)
...
θ0B ∈ Su(G1)

(7.23)

Finally, the solution to Problem 1 is found by solving the following linear program:

{ρ∗,Θ∗} = arg max
Θ,ρ

ρ

subject to (7.9), (7.23),
ΩΘ ⊆ (1− ρ)X,
ΨΘ ⊆ (1− ρ)U.

(7.24)

Complexity

The number of variables and constraints in (7.24) scales linearly with respect to K, n,

m, and the number of rows in X,U,W. In practice, representation complexity of sets

in (9.9) scale polynomially in n and m, while the exact degree of growth depends on

the application. Thus, taking the complexity of the interior-point linear programming

methods into account, the overall complexity of our solution to Problem 1 increases

polynomially with respect to the problem size.

7.4 Structure Design

Here we provide the solution to Problem 2.
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7.4.1 Binary encoding

We need to make binary decisions on whether s′ is connected to s on G. This task

is captured by introducing binary N(N − 1) binary variables bs′s ∈ {0, 1}, s, s′ ∈ S.

Note that bss = 1,∀s ∈ S. We define the adjacency matrix of G as B(G) ∈ BN×N

such that B(G)[s′s] := bs′s. The following property follows from the basic properties

of powers of adjacency matrix in graph theory:

B(Gk) =
k∑
p=1

B(Gp), (7.25)

where both summation and multiplication are defined in a Boolean sense, i.e., for

b1, b2 ∈ B we have b1b2 = b1 ∧ b2 and b1 + b2 = b1 ∨ b2. (e.g., 1 + 1 = 1).

Given B ∈ BN×N , we define Bx ∈ Bm×n and Bu ∈ Bm×m such that

Bx((S,L))[i,j] = bs′s, u[i] ∈ si, x[j] ∈ s[j], (7.26a)

Bu((S,L))[i,j] = bs′s, u[i] ∈ si, u[j] ∈ s[j]. (7.26b)

Given a matrix C ∈ Rm×n, and k ∈ N+ the following relation holds:

C ∈ Sz(Gk)⇔ −MBz(G) ≤ C ≤MBz(G), (7.27)

where z = x, u, and M is a sufficiently large positive number that is greater than

maxi,j |C[i,j]]|. The constraints in (7.25), (7.27), are mixed binary-linear constraints.

We need only to declare the entries in B(G) as binaries - there are N(N−1) of them -

and all the other relations in (7.25) are captured using continuous auxiliary variables

declared over [0, 1] - which constraints enforce them take values from {0, 1}. Encoding
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Boolean functions using mixed binary-linear constraints is a standard procedure (see,

e.g., [Bemporad and Morari, 1999]) and the details are not presented here.

7.4.2 Graph Optimization

Finally, we find the optimal communication graph G∗ - the solution to Problem 2 -

as the following mixed-integer linear program (MILP):

{Θ∗,B(G∗)} = arg min
Θ,bs′s,s,s

′∈S

∑
s,s′∈S bs′s

subject to (7.9), (7.23), (7.27),
ΩΘ ⊆ X,ΨΘ ⊆ U.

(7.28)

Note that (7.28) provides both a communication graph and a corresponding RCI set

and distributed control policy parameterized by Θ∗. Note that we can combine Prob-

lem 1 and Problem 2 by adding an additional term to the cost function in (7.28)

to promote greater margin of correctness. The trade-off between sparser graph and

greater margin of correctness can be controlled by designating weights to the corre-

sponding terms.

Complexity

Unlike (7.24), solving (7.28) is NP-hard. MILP solvers use branch and bound tech-

niques to explore optimal solutions by solving linear-program relaxations of the orig-

inal problem. In order to find suboptimal but (arbitrary) faster solutions, a simple

approach is terminating the MILP solver early - after it has an incumbent feasible

solution. (see Fig. 7·4 in the examples).
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7.5 Examples

We have developed a python script that solves Problem 1 and Problem 2 given the

system, specification and relevant parameters by the user. This script, as well as codes

for the examples below, are publicly available in github.com/sadraddini/distinct.

7.5.1 Coupled Double Integrators

We consider N = 5 double-integrators with state and control couplings. Fo all s, s′ ∈

S, we assign the following values to (7.1):

As =

(
1 + ε 1
−ε 1 + ε

)
, As′s =

(
ε −ε
−ε ε

)
,

Bs =

(
0
1

)
, Bs′s =

(
−ε
ε

)
,

where ε is a constant characterizing the degree of coupling. We explore the behavior

of solutions versus multiple values of ε > 0. For any ε > 0, at least one of the

eigenvalues of A lies out of the unit circle. Thus A is unstable. We let X = B10
∞,U =

2B5
∞,W = ηB10

∞, where η is also a constant we vary in this example.

Structured Control

We solve Problem 1. We are given a communication graph that is circular, as il-

lustrated in Fig. 7·1. We consider both the directed and the undirected case. The

results for various values of K, η, ε, are shown in Table 7.1. As expected, the mar-

gins are smaller when coupling and disturbances are greater, and communications

are directed. Also, higher values of K usually correspond to better performance. For

K < 6, we could not find a solution for the directed graph. Projections of the RCI set
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s1

s2

s3 s4
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s2

s3 s4

s5

Figure 7·1: Circular graphs: [Left]: directed [Right]: undirected

Table 7.1: Margins of Correctness for Graphs in Fig. 7·1

K η ε ρ∗

Directed Undirected
6 0.05 0.05 0.27 0.75
6 0.1 0.1 Infeasible 0.33
6 0.1 0.01 0.02 0.58
4 0.05 0.01 Infeasible 0.79
4 0.05 0.05 Infeasible 0.75
6 0.05 0.01 0.51 0.79

and sample trajectories are illustrated in Fig. 7·2. It is observed that the undirected

circular communication graph is able to keep the state closer to zero, while the RCI

set and trajectories of the directed graph get closer to the boundaries of X. All the

computations in Table 7.1 were performed using Gurobi linear program solver on a

dual core 3GHz MacBook Pro. The computation times were all less than a second.

Graph Design

We solve Problem 2. We let cs′s = 1,∀s, s′ ∈ S, s 6= s′. Various optimal graphs

corresponding to different values are shown in Fig. 7·3. We often obtained graphs

that were strongly connected. However, in case the couplings are sufficiently weak,

fully decentralized solutions were found, as shown in the null graph in Fig. 7·3 (f).

The computations were performed using Gurobi MILP solver on a 3GHz dual core

MacBook Pro. As discussed in Sec. 7.4.2, MILP solvers explore solutions using branch

and bound techniques. Two instances of the best incumbent solution versus time is
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Figure 7·2: Projection of the RCI set on the state-space of s1 and
a sample trajectory of 60 time steps. RCI sets correspond to [Left]:
directed [Right]: undirected graphs in Fig. 7·1.

shown in Fig. 7·4. We can obtain suboptimal solutions by early manual termination.

7.5.2 Platooning

We adopt a simplified version of the model in [Sadraddini et al., 2017]. A platoon is a

string of Np autonomous vehicles following a leader l. We have N = Np subsystems.

System (9.1) and sets (9.9) are constructed from what is described below. The state

of each follower vehicle s ∈ S is xs = (ds, vs), where ds represents the distance from

the preceding vehicle and vs is its velocity in the leader’s frame. The evolution is

given by:

ds[t+ 1] = ds[t]− vs[t] + vs′ [t] + δxs [t],
vs[t+ 1] = vs[t] + us[t] + δvs [t] + δvl [t],

(7.29)

where s′ ∈ S ∪ {l} is the preceding vehicle, δvs [t] ∈ [−ε, ε], δxs [t] ∈ 1
10

[−ε, ε], are the

disturbances hitting a follower vehicle, and δvl [t] ∈ [−ε, ε] is the disturbance hitting

the leader, which makes the frame non-inertial. We vary ε in this example. Note

that (7.29) is a quite adversarial model since we consider independent disturbances
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s1

s2

s3 s4

s5

(a) K = 3

η = 0.2, ε = 0.06

J(G∗) = 14, CT=82s

s1

s2

s3 s4

s5

(b) K = 6

η = 0.2, ε = 0.1

J(G∗) = 9, CT=321s

s1

s2

s3 s4

s5

(c) K = 4

η = 0.2, ε = 0.05

J(G∗) = 8, CT=213s

s1

s2

s3 s4

s5

(d) K = 4

η = 0.1, ε = 0.1

J(G∗) = 7, CT=721s

s1

s2

s3 s4

s5

(e) K = 4

η = 0.1, ε = 0.02

J(G∗) = 5, CT=226s

s1

s2

s3 s4

s5

(f) K = 6

η = 0.1, ε = 0.01

J(G∗) = 0, CT=1s

Figure 7·3: Optimal communication graphs for different values of K
(complexity of the controller), η (maximum magnitude of the allowed
disturbances) and ε (the degree of dynamical couplings). “CT” stands
for computation time.

affecting the distance evolution. The objective is to avoid rear-end avoid collisions for

all times by writing ds[t] ≥ −0.5,∀t ≥ 0, (a distance offset is performed in a way that

ds < −0.5 implies collision), and
∑
S ds[t] ≤

1
2
Np, ∀t ∈ N - the length of the platoon

is always bounded. We also have bounded controls: us[t] ∈ [−1, 1],∀s ∈ S,∀t ∈ N.

System (7.29) and specification are put into the form (9.1), and (9.9), respectively.

Note that the number of rows in W scale quadratically with the platoon size - W has

a more complicated shape than a box [Sadraddini et al., 2017].

Structured Control

We solve Problem 1. Consider a communication graph that every vehicle sends in-

formation to its follower (see Fig. 7·5 (b)). We set ε = 0.05. We observe that the

minimum K such that a feasible solution is found is Np + 1. The results are shown
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Figure 7·4: The costs of incumbent feasible solutions versus time.

Table 7.2: Margins of Correctness for Predecessor Following

Np 3 4 5 6 8 10 12 15
ρ∗ 0.727 0.726 0.723 0.721 0.716 0.710 0.704 0.697

CT(s) − − 0.05 0.1 0.7 3 13 133

in Table. 7.2 for K = Np + 1. It is observed that the margin of correctness gradually

decreases with the platoon size, highlighting the fundamental limits of predecessor

following [Sabău et al., 2017].

Graph Design

We solve Problem 2. We let N = 6 and csi,sj = (i−j)2 to penalize longer communica-

tion links. Some particular optimal graphs are shown in Fig. 7·5. It is observed that

for small disturbances, no communication is needed at all, but in order to attenuate

heavier disturbances without violating collision and platoon length constraints, more

communication links are required.
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l

(a) ε = 0.15, K = 8, J(G∗) = 0, CT=7s

l

(b) ε = 0.1800, K = 8, J(G∗) = 5, CT=81s

l

(c) ε = 0.1836, K = 8, J(G∗) = 26, CT=32s

Figure 7·5: Optimal communication graphs for platooning. The
leader is considered as an adversary with bounded acceleration range.
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Chapter 8

Formal Methods for Adaptive Control

In this chapter, we introduce a formal perspective on adaptive control. One particular

limitation of current adaptive (self-learning) control methods is handling systems that

involve discontinuities. Most adaptive control techniques rely on the continuity of the

model and its parameterization. In many realistic models, state, control or parameters

take values from both continuous and discrete domains. Within methods that do

not entirely depend on the continuity of the model, a promising direction is using

multiple models/controllers [Morse, 1996,Narendra and Xiang, 2000,Anderson et al.,

2001,Hespanha et al., 2003], where the objective is to achieve stability via designing a

switching law to coordinate the controllers. Model reference adaptive control (MRAC)

of specific forms of scalar input piecewise affine systems were studied in [di Bernardo

et al., 2013, di Bernardo et al., 2016]. However, it is still not clear how to deal with

general discrete or hybrid systems.

We consider discrete-time systems with constant but initially unknown parame-

ters. We describe system specifications using linear temporal logic (LTL). As in any

other adaptive control technique, we require an online parameter estimator. Our pa-

rameter estimator maps the history of the evolution of the system to the set of “all

possible” parameters, which contains the actual parameters. We embed the param-

eterized system in a (non-deterministic) parametric transition system (PTS), from
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which we construct a (non-deterministic) adaptive transition system (ATS) that con-

tains all the possible combinations of transitions with the what is returned by the

parameter estimator. The main results and contributions of this chapter are as fol-

lows:

• For finite systems, the LTL adaptive control problem reduces to a Rabin game

[Grädel et al., 2002] on the product of the finite ATS and the Rabin automaton

corresponding to the LTL specification. The method is correct by design and it

is complete, i.e. it finds a solution if one exists;

• For infinite systems, we construct finite quotient ATSs by partitioning the state

and the parameter space and quantizing the control space. Once an adaptive

control strategy is found for the quotient, it is guaranteed that it will also ensure

the satisfaction of the LTL formula for the original infinite system. The method

may be conservative.

This chapter is organized as follows. The problem is formulated in Sec. 8.1.

We define PTSs in Sec. 8.2. Technical details for the solutions for finite and infinite

systems are explained in Sec. 8.3 and 8.4, respectively. Two case studies are presented

in Sec. 8.5.

8.0.1 Transition Systems

Definition 39. A transition system is defined as the tuple T = (X,U, β,Π, O), where:

• X is a (possibly infinite) set of states;

• U is a (possibly infinite) set of control inputs;

• β is a transition function β : X × U → 2X ;



155

• Π = {π1, π2, · · · , πm} is a finite set of atomic propositions;

• O : X → 2Π is an observation map.

We assume that T is non-blocking in the sense that |β(x, u)| 6= 0 for all x ∈ X, u ∈

U . 1 A transition system T is deterministic if |δ(x, u)| = 1, ∀x ∈ X, ∀u ∈ U , and is fi-

nite ifX and U are finite sets. A trajectory of T is an infinite sequence of visited states

x0x1x2 · · · . The infinite word produced by such a trajectory is O(x0)O(x1)O(x2) · · · .

Note that the alphabet here is 2Π. The set of all infinite words that can be generated

by T is a subset of (2Π)
ω
.

Definition 40. A control strategy Λ is a function Λ : X∗ × U∗ → U that maps the

history of visited states and applied controls to an admissible control input, where

uk = Λ(x0 · · · , xk, u0 · · · , uk−1),∀k ∈ N.

Definition 41. Given a transition system T = (X,U, β,Π, O), a control strategy Λ

and a set of initial states X0 ∈ X, we define:

L(T ,Λ, X0) :=
{

O(x0)O(x1) · · · ∈ (2Π)
ω
∣∣∣

x0 ∈ X0, xk+1 ∈ β(xk, uk), k ∈ N
}
,

where uk = Λ(x0 · · · , xk, u0 · · · , uk−1).

8.0.2 Quotient Transition System

Consider a transition system T = (X,U, β,Π, O). A (finite) set Q ⊂ 2X is a (finite)

partition for X if 1) ∅ 6∈ Q, 2)
⋃
q∈Q q = X, and 3) q ∩ q′ = ∅,∀q, q′ ∈ Q, q 6= q′. A

partition Q is observation preserving if for all q ∈ Q, we have O(x) = O(x′),∀x, x′ ∈ q.
1 If T is blocking, we can make it non-blocking by adding an additional state xsink such that

for all x ∈ X,u ∈ U, |β(x, u)| = 0, we have xsink = β(x, u). Also, we add transitions xsink =
β(xsink, u),∀u ∈ U . In order to prevent blocking, we find a control strategy such that xsink is not
reachable.
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Definition 42. Given a transition system T = (X,U, β,Π, O) and an observation

preserving partition Q for X, the quotient transition system is defined as the tuple

TQ = (Q,U, βQ,Π, OQ) such that:

• for all q ∈ Q, we have q′ ∈ βQ(q, u) if and only if ∃x ∈ q, ∃x′ ∈ q′ such that

x′ ∈ β(x, u);

• for all q ∈ Q, we have OQ(q) = O(x) for any x ∈ q.

Given a control strategy for the quotient ΛQ : Q∗ × U∗ → U , and a set of initial

conditions Q0, we construct Λ(Q) : X∗ → U such that Λ(Q)(x0 · · ·xk) = ΛQ(q0 · · · qk),

xi ∈ qi, 0 ≤ i ≤ k, k ∈ N, and X
(Q)
0 = {x0|x0 ∈ q0, q0 ∈ Q0}. It is easy to show

that L(T ,Λ(Q), X
(Q)
0 ) ⊆ L(TQ,ΛQ, Q0), which stems from the fact that TQ simulates

T . We refer to L(TQ,ΛQ, Q0) \ L(T ,Λ(Q), X
(Q)
0 ) as the set of spurious infinite words

(SIW). In order to have L(T ,Λ(Q), X
(Q)
0 ) = L(TQ,ΛQ, Q0) (empty SIW), a sufficient

condition is that TQ and T are bisimilar [Belta et al., 2017]. For infinite X, there is

no general guarantee that a finite Q exists such that TQ is bisimilar to T . In order to

“shrink” SIW, Q is refined. At the most extreme case, SIW remains nonempty unless

Q = X. Further details on simulation and bisimulation relations are not required for

this chapter and the interested reader is referred to the related works in the literature,

such as [Fernandez and Mounier, 1991,Tabuada, 2008,Belta et al., 2017].

8.0.3 LTL Control

Given a finite transition system T = (X,U, β,Π, O) and an LTL formula ϕ over Π, we

are interested in finding a control strategy Λ and the largest set of initial conditions

Xmax
0 such that L(T ,Λ, Xmax

0 ) ⊆ L(ϕ). In other words, we require ϕ to be satisfied

for all trajectories that are allowed by the non-determinism in T .
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Definition 43. Given a transition system T = (X,U, β,Π, O) and a DRA Rϕ =

(S, s0,A, α,Ω) corresponding to LTL formula ϕ, the product automaton T Pϕ = T ⊗Rϕ

is defined as the tuple
(
XP , XP,0, U, βP ,ΩP

)
, where:

• XP = X × S is the set of product states;

• XP,0 = {(x, s0)|x ∈ X} is the set of initial product states;

• U is the set of control inputs;

• βP : XP × U → 2X
P

is the product transition function, where xP
′ ∈ δ(xP , u),

xP = (x, s), xP
′
= (x′, s′), if and only if x′ ∈ β(x, u) and s′ = α(s,O(x)).

• ΩP =
{

(F P
1 , I

P
1 ), · · · , (F P

r , I
P
r )
}

is a finite set of pairs of sets of states, where

F P
i = {(x, s)|x ∈ X, s ∈ Fi}, IPi = {(x, s)|x ∈ X, s ∈ Ii}, i = 1, · · · , r.

The product automaton T Pϕ is a (non-deterministic) automaton (with control

inputs) capturing both the transitions in T and the acceptance condition of ϕ. The

solution to the problem of finding a control strategy to satisfy ϕ is accomplished by

solving the Rabin game on the product automaton. The details are not presented

here but can be found in [Chatterjee and Henzinger, 2012]. It can be shown that the

control strategy is memoryless on the product automaton in the form Λ : X×S → U .

In other words, the history of the system is incorporated into the state of the Rabin

automaton. The largest set of admissible initial conditions Xmax
0 corresponds to the

winning region of the Rabin game.

If the transition system T is infinite, a finite quotient is constructed. If U is

infinite, it can be quantized to obtain a finite set 2. It is straightforward to show

2An alternative (better) approach was proposed in [Yordanov et al., 2012] for piecewise affine
systems, where the authors computed a finite set of sets of control inputs that enabled transitions
with minimal non-determinism in the quotient system.
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that if a control strategy satisfying ϕ exists for the finite quotient, it also satisfies ϕ

if implemented on the original system. However, unless the quotient and the original

transition system are bisimilar, the non-existence of a control strategy for the quotient

does not indicate that one does not exist for the original system. Hence the approach

of using finite quotients may be conservative [Tabuada, 2008,Belta et al., 2017].

8.1 Problem Formulation and approach

We are interested in discrete-time systems of the following form:

x+ = F (x, u, θ, d),
yi = µi(x), i = 1, · · · ,m, (8.1)

where x ∈ X is the state, u ∈ U is the control input, θ ∈ Θ represents the parameters

of the system, d ∈ D is the disturbance (adversarial input), F : X ×U ×Θ×D → X

is the system evolution function, and yi, i = 1, · · · ,m, are Boolean system outputs,

where µi : X → B. We define the set of atomic propositions Π = {π1, · · · , πm} such

that x |= πi ⇔ µi(x) = True, i = 1, · · · ,m. The sets X,U,Θ, D are the admissible

sets for states, controls, parameters and disturbances respectively. All sets may be

finite or infinite. System (8.1) is finite if X,U,Θ, D are all finite.

Example 17. A prominent class of systems encountered in adaptive control are param-

eterized linear systems, where F (x, u, θ, d) = A(θ)x+B(θ)u+ d. We have X ⊂ Rnx ,

U ⊂ Rnu , Θ ⊂ Rnθ , D ⊂ Rnd . A,B are matrices with appropriate dimensions that

depend on θ. It is also common to assume that the outputs are Boolean evaluations of

linear predicates µi = (rTi x ≤ ρi), where ri ∈ Rn, and ρi ∈ R. Thus, each proposition

πi defines a closed half space in Rnx .

As mentioned in the introduction, we distinguish between the uncertainty in pa-
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rameters and disturbances. Disturbances usually have unknown (fast) variations in

time. In this chapter, we assume that θ is a constant but its value θ∗ is initially

unknown. If we treat the uncertainties in parameters and disturbances in the same

way, we are required to design control strategies that are robust versus all values in

both Θ and D. This approach is severely conservative and often fails to find a solu-

tion. The key idea of adaptive control is to take advantage of the fact that θ∗ can be

(approximately) inferred from the history of the evolution of the system. Therefore,

adaptive control is often significantly more powerful than pure robust control and it

is also more difficult to design and analyze. In engineering applications, parameters

are related to the physical attributes of the plant whereas disturbances are related to

effects of stochastic nature such as imperfect actuators/sensors and perturbations in

the environment.

Problem 11. Given system (8.1) and an LTL formula ϕ over Π, find a control strategy

Λ : X∗ × U∗ → U and a set of initial states X0 ⊆ X such that all the trajectories of

the closed loop system starting from X0 satisfy ϕ.

Our aim is to convert Problem 12 to an LTL control problem described in Sec.8.0.3

and use the standard tools for Rabin games. To this end, we need to incorporate

adaptation into control synthesis. The central tool to any adaptive control technique

is parameter estimation. Note that an adaptive control strategy has the form Λ :

X∗ × U∗ → U , since parameters are estimated using the history of the evolution

of the system. We take the following approach to convert Problem 12 into an LTL

control problem. We embed system (8.1) in a parametric transition system (PTS),

which is defined in Sec. 8.2. We construct a finite adaptive transition system (ATS)

from a finite PTS. An ATS is an ordinary transition system as in Sec. 8.0.1, but
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parameters are also incorporated into its states and transitions in appropriate way,

which is explained in Sec. 8.3. We deal with an infinite PTS by constructing a finite

quotient PTS in Sec. 8.4.

8.2 Parametric Transition System

Definition 44. A parametric transition system (PTS) is defined as the tuple T Θ =

(X,U,Θ, γ,Π, O), where:

• X is a (possibly infinite) set of states;

• U is a (possibly infinite) set of control inputs;

• Θ is a (possibly infinite) set of parameters;

• γ is a transition function γ : X × U ×Θ→ 2X .

• Π = {π1, π2, · · · , πm} is a finite set of atomic propositions;

• O : X → 2Π is an observation map.

The only difference between a PTS and a transition system is that its transitions

depend on parameters. Note that if |Θ| = 1, a PTS becomes a transition system.

Now we explain how to represent (8.1) in the form of a PTS. The sets X,U,Θ are

inherited from (8.1) (which is why we have used the same notation). The transition

function γ is constructed such that

γ(x, u, θ) =
{
F (x, u, θ, d)

∣∣∣d ∈ D} . (8.2)
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The observation map O : X → 2Π is given by:

O(x) =
{
πi

∣∣∣µi(x) = True, i = 1 · · · ,m
}
. (8.3)

Therefore, T Θ = (X,U,Θ, γ,Π, O) captures everything in system (8.1). We refer to

T Θ as the embedding of (8.1). One can interpret a PTS as a (possibly infinite) family

of transition systems. The actual transitions are governed by a single parameter θ∗,

which is initially unknown to the controller. Therefore, the controller has to find out

which transition system is the ground truth.

8.3 Control Synthesis for Finite Systems

In this section, we assume the PTS embedding system (8.1) is finite.

8.3.1 Parameter Estimation

Definition 45. A parameter estimator Γ is a function

Γ : X∗ × U∗ → 2Θ
−∅ (8.4)

that maps the history of visited states and applied controls to a subset of parameters.

We have ϑk = Γ(x0 · · ·xk;u0 · · ·uk−1), where:

ϑk =
{
θ ∈ Θ

∣∣∣xi+1 ∈ γ(xi, ui, θ), 0 ≤ i ≤ k − 1
}
. (8.5)

One can see that the parameter estimator (8.5) is “sound” in the sense that

θ∗ ∈ ϑk,∀k ∈ N. We have ϑ0 = Γ(x0) = Θ, by definition. Note that our definition of

parameter estimator is different from the traditional ones, which are often in the form
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X∗ × U∗ → Θ, as they return only an estimate θ̂ rather than the set of all possible

parameters. For our formal setup, it is vitally important that the controller take into

account all possible ground truth parameters at all times. Otherwise, guaranteeing

the specification is impossible. The following proposition enables us to make (8.5)

recursive.

Proposition 18. The following recursive relation holds:

ϑk+1 =
{
θ ∈ ϑk

∣∣∣xk+1 ∈ γ(xk, uk, θ)
}
. (8.6)

Proof. Substitute ϑk from (8.5):

{
θ ∈ ϑk

∣∣∣xk+1 ∈ γ(xk, uk, θ)
}

=
{
θ ∈ Θ

∣∣∣θ ∈ ϑk, xk+1 ∈ γ(xk, uk, θ)
}

=
{
θ ∈ Θ

∣∣∣xi+1 ∈ γ(xi, ui, θ), 0 ≤ i ≤ k
}

= ϑk+1.

Corollary 6. The set of estimated parameters never grows: ϑk+1 ⊆ ϑk,∀k ∈ N.

Therefore, we obtain a recursive parameter estimator Γrec : 2Θ
−∅×X×U×X → 2Θ

−∅

as ϑk+1 = Γrec(ϑk, xk, uk, xk+1). Note that Γrec is deterministic.

8.3.2 Adaptive Transition System

As mentioned in the introduction, a primary challenge of provably correct adaptive

control is coupling parameter estimation and control synthesis. In order to combine

these two, we provide the following definition.

Definition 46. Given a PTS T Θ = (X,U,Θ, γ,Π, O), we define the adaptive transition

system (ATS) as the tuple T adp =
(
Xadp, U, γadp,Π, Oadp

)
, where U,Π are inherited
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Figure 8·1: Example 18: [Top] A PTS with two possible parameters
θ1, θ2, and the corresponding transition systems [Bottom] The corre-
sponding ATS
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from T Θ with the same meaning and

• Xadp ⊆ X × 2Θ
−∅ is the set of states;

• γadp : Xadp × U → 2X
adp

is the transition function, where we have (x′, ϑ′) ∈

γadp((x, ϑ), u) if and only if x′ ∈ γ(x, u) and ϑ′ = Γrec(ϑ, x, u, x
′);

• Oadp : Xadp → 2Π is the observation function where Oadp(x, ϑ) = O(x),∀x ∈

X,ϑ ∈ 2Θ
−∅.

Example 18. Consider a PTS with X = {x1, x2, x3}, U = {u1, u2}, and Θ = {θ1, θ2},

and Π = {π1, π2}, where O(x1) = {π1}, O(x2) = {π1, π2}, and O(x3) = ∅. The

transition systems corresponding to θ1 and θ2 are illustrated in Fig. 8·1 [top]. The

ATS corresponding is shown in Fig. 8·1 [Bottom].

The number of states in the ATS is upper-bounded by |X|(2|Θ|− 1), which shows

an exponential explosion with the number of parameters. Fortunately, not all states

in X × 2Θ
−∅ are reachable from the set {(x, θ)|x ∈ X, θ ∈ Θ}, which is the set of

possible initial states in the ATS. Algorithm 2 constructs the ATS consisting of only

these reachable states.

8.3.3 Control Synthesis

Finally, given an ATS T adp and an LTL formula ϕ, we construct the product automa-

ton T adp ⊗ Rϕ as explained in Sec. 8.0.3, and find the memoryless control strategy

on T adp ⊗Rϕ by solving the Rabin game. We also find the largest set of admissible

initial conditions Xadp,max
0 as the winning region of the Rabin game. In order to find

Xmax
0 , we perform the following projection:

Xmax
0 =

{
x0

∣∣∣(x0,Θ) ∈ Xadp,max
0

}
. (8.7)



165

Algorithm 2 Procedure for Constructing ATS from a PTS

Require: T Θ = (X,U,Θ, γ,Π, O)
Xadp,new = {(x,Θ)|x ∈ X}
Xadp = Xadp,new

while Xadp,new 6= ∅ do
Xadp,new ← ∅
for (x, ϑ) ∈ Xadp do

for u ∈ U do
γadp((x, ϑ), u) = ∅
ϑ′ = ∅
for θ ∈ ϑ do

for x′ ∈ γ(x, u, ϑ) do
for θ′ ∈ ϑ do

if x′ ∈ γ(x, u, θ′) then
ϑ′ ← ϑ′ ∪ θ′

γadp((x, ϑ), u)← γadp((x, ϑ), u) ∪ (x′, ϑ′)
if (x′, ϑ′) 6∈ Xadp then

Xadp,new ← Xadp,new ∪ (x′, ϑ′)
Xadp ← Xadp ∪ (x′, ϑ′)
Oadp(x′, ϑ′) = O(x′)

return T adp =
(
Xadp, U, γadp,Π, Oadp

)
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The adaptive control strategy takes the memoryless form Λ : X × 2Θ
−∅ × S → U ,

which maps the current state in the PTS, the set of current possible ground truth

parameters and the state in the Rabin automaton to an admissible control action.

Theorem 13. Given a finite system (8.1), an initial condition x0 ∈ X, an LTL formula

over Π, there exists a control strategy Λ∗ : X∗×U∗ → U such that O(x0)O(x1) · · · |=

ϕ, ∀θ ∈ Θ,∀dk ∈ D, xk+1 = F (xk, uk, θ, dk),∀k ∈ N, if and only if x0 ∈ Xmax
0 . .

Proof. (sketch) The completeness property follows from two facts. First, the solutions

to Rabin games on finite automata are complete. Second, every possible behavior of

a finite PTS embedding (8.1) and parameter estimator (8.5) is captured in the ATS.

If x0 6∈ Xmax
0 , then it can be shown that there exists a θ ∈ Θ and a disturbance

sequence d0d1 · · · such that there does not exist any control strategy to satisfy the

LTL specification.

8.4 Control Synthesis for Infinite Systems

In this section, we assume that PTS embedding (8.1) is not finite, which means that

at least one of the sets X,U,Θ is infinite. We provide the general solution for the case

when all sets are infinite. We note that the approach in this section is still preliminary

and we leave further investigation to our future work.

We consider a finite observation preserving (see Sec. 8.0.2) partition QX =

{q1
X , · · · , q

pX
X } for X and a finite partition QΘ = {q1

Θ, · · · , q
pΘ

Θ } for Θ. We also quan-

tize U to obtain a finite Uqtz = {u1
qtz, · · · , u

pu
qtz}. In this chapter, we do not consider

any particular guideline for how to partition and leave this problem to our future

work. In general, the finer the partitions, the less conservative the method is with a

price of higher computational effort. “Smart” partition refinement procedures were
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studied in [Yordanov et al., 2013,Nilsson and Ozay, 2014].

Once partitions and quantizations are available, we compute the transitions. We

denote the successor (post) of set qX , under parameter set qΘ and control u by

Post(qX , qΘ, u) :=
{
x ∈ X

∣∣∃x ∈ qX ,∃θ ∈ qΘ, x ∈ γ(x, θ, u)
}
. (8.8)

A computational bottleneck is performing the post computation in (8.8). For ad-

ditive parameters, the post computation is exact for piecewise affine systems using

polyhedral operations [Yordanov et al., 2012]. For multiplicative parameters, an

over-approximations of post can be computed [Yordanov and Belta, 2008], which in-

troduces further conservativeness but retains correctness. Finally, we construct the

quotient PTS from the infinite PTS. The procedure is outlined in Algorithm 3.

Algorithm 3 Constructing quotient PTS from infinite PTS

Require: T Θ = (X,U,Θ, γ,Π, O)
Require: QX , QΘ, Uquantized

1: for qX ∈ QX do
2: OQ(qX) = O(x) for some x ∈ qX
3: for qΘ ∈ QΘ do
4: for uqtz ∈ Uqtz do
5: Xpost = Post(qX , qΘ, u)
6: γQ(qX , uqtz, qΘ) = ∅
7: for q′X ∈ QX do
8: if Xpost ∩ q′X 6= ∅ then
9: γQ(qX , uqtz, qΘ)← γQ(qX , uqtz, qΘ) ∪ q′X

10: return T Q,Θ =
(
QX , Uquantized, QΘ, γ

Q,Π, OQ
)

8.5 Case Studies

We present two case studies. The first one is a simple finite deterministic system.

The second case study involves a linear parameterized system that is infinite and

non-deterministic due to the presence of additive disturbances.
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Example 19.

Figure 8·2: Example 19: (Left): The Robot (shown in black) and
its environment. (Middle): Snapshots of the executed Motion at time
k = 33, and (Right) k = 62. The robot satisfies the specification.

We consider a robot motion planning problem. The environment is modeled as a

finite number of cells illustrated in Fig. 8·2. Each cell corresponds to a state in X. We

have |X| = 150. The set of control inputs is given by U = { left, right, up, down},

where the transition enabled by each input corresponds to its unambiguous meaning.

There exists an constant drift in the horizontal direction in the purple region, but

its direction to left or right and its intensity are unknown. The set of possible drifts

is Θ = {+2,+1, 0,−1,−2}, where positive sign corresponds to the left direction. At

each time, if the robot is in a purple cell, the drift is added to its subsequent position.

For example, if the robot applies u =right, and θ∗ = 2, the robot actually ends up

in a cell to the left. Similarly, if u =up and θ∗ = −2, the robot moves a cell up and

two cells to the right. The red cells are “unsafe” regions that must be avoided, and

the green cells A,B are “interesting” regions, which have to be persistently visited.

The LTL formula describing this specification is:

ϕ = GFA ∧ GFB ∧ G(¬unsafe).

We implemented the procedure outlined in Sec. 8.3. It is worth to note that there

does not exist a pure robust control solution to this problem. In other words, if the
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robot ignores estimating the drift, it can not find a control strategy. For example, if

the robot enters the purple region around the middle and persistently applies up, a

maximum drift in either direction can drive the robot into the unsafe cells before it

exits the purple region. Therefore, the only way the robot can fulfill the specification

is to learn the drift. The robot first enters the drifty region to find out its value

and then moves back and re-plans its motion. Notice that this procedure is fully

automated using the solution of the Rabin game on the product T adp ⊗ Rϕ. Two

snapshots of the executed motion for the case θ∗ = +2 are shown in Fig. 8·2.

Example 20. Consider a one-dimensional linear system of the following form:

x+ = (1 + θ1)x+ θ2u+ θ3 + d, (8.9)

where θ1 ∈ [−0.5, 0.5], θ2 ∈ [1, 2], and θ3 ∈ [−0.2, 0.2] are fixed parameters, and

d ∈ D, is the additive disturbance, D = [−0.1, 0.1]. The set of admissible control

inputs is U = [−1, 1]. We desire to restrict x to the [−1, 1] interval for all times,

which is described by the following LTL formula:

ϕ = G(x ≤ 1) ∧G(x ≥ −1).

We have Θ = [−0.5, 0.5] × [1, 2] × [−0.2, 0.2]. We partitioned the intervals of θ1, θ2,

θ3, and X into 2,2,4, and 10 evenly spaced intervals, respectively. Thus, we have

partitioned Θ into 16 cubes (|QΘ| = 16) and X into 10 intervals (|QX | = 10). U

is quantized to obtain Uqtz = {−1,−0.8, · · · , 0.8, 1}. We implemented Algorithm 3

to obtain the quotient PTS and Algorithm 2 to find the corresponding ATS. The

computation times were 0.1 (Algorithm 3) and 152 (Algorithm 2) seconds on a 3.0

GHz MacBook Pro. Even though |X×2QΘ

−∅ | = 655350, the number of reachable states
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Figure 8·3: Example 20: trajectory of the system versus time, which
is always between −1 and 1.

obtained from Algorithm 2 was 14146.

We solved the safety game on the ATS, which took less than a second and found

a winning region containing 14008 states. The winning region in the state-space is

X0 = [−0.6, 0.6]. Since the solution is conservative, Xmax
0 may be larger if a finer

partitioning is used. We also found that the winning region is empty if we had sought

a pure robust control strategy. We simulated the system for 100 time steps starting

from x0 = 0. The values of disturbances at each time are chosen randomly with a

uniform distribution over D. We observe that the specification is satisfied, and the

sets given by the parameter estimator shrink over time and always contain the ground

truth parameter, which in this case is θ∗1 = 0.45, θ∗2 = 1.11, θ∗3 = −0.18. The results

are shown in Fig. 8·4.
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Figure 8·4: Example 20: Snapshots of ϑk at various times, which
are illustrated by the shaded regions. They always contain the ground
truth parameter θ∗1 = 0.45, θ∗2 = 1.11, θ∗3 = −0.18.



Chapter 9

Formal Model Identification

In this chapter, a discrete-time system is considered from which we only assume a

finite set of input-output data and bounds describing the continuity of the system.

The latter, which is given by only 2 or 3 positive numbers, is essential to characterize

the range of possible system behaviors. The goal is to design controllers from STL

specifications over predicates on the state. If STL satisfaction is not possible, we

are still interested in finding the least-violating controllers. Our main results and

contributions are as follows:

- We fit a piecewise affine (PWA) model to data and continuity constants. PWA

models are able to capture arbitrarily high degrees of nonlinearity by tuning the

number of modes. Unlike existing works on hybrid model identification [Bemporad

et al., 2005, Paoletti et al., 2007, Alur and Singhania, 2014], we provide a set-valued

model which is non-deterministic in nature, and is guaranteed to contain all the

behaviors of the concrete system. All the non-determinism is captured by polytopic

additive disturbances. Since such PWA models are not unique, we find ones that have

the smallest non-determinism - in a sense that is clarified in the chapter. The model

identification technique in this chapter is based on solving a series of non-convex

optimization problems, which are handled using mixed-integer linear programming

(MILP).

172
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- Once we have obtained a PWA model with additive polytopic disturbances, we

design controllers from STL specifications using the tube-based approach in Chapter

4.

This chapter is organized as follows. The problem and the underlying assumptions

are stated in Sec. 9.1. An overview of the approach is presented in Sec. 9.2. Technical

details on model identification are provided in Sec. 9.3. An illustrative example is

demonstrated in Sec. 9.4.

Notation

The set of natural, real, and non-negative real numbers are denoted by N, R, and R+,

respectively. The set of all finite sequences and infinite sequences that can be gener-

ated from an alphabet A are denoted by A∗ and Aω, respectively. A discrete-time real

signal - simply referred to as signal in the rest of the chapter - is an infinite sequence

s[0]s[1]s[2] · · · , where s ∈ (Rn)ω, s[k] ∈ Rn, k ∈ N. All time intervals in this chapter

are interpreted in discrete-time: [a, b] = {a, a + 1, · · · , b}, a, b ∈ N, a < b. Given sets

X, Y ⊂ Rn, their Minkowski sum is denoted by X ⊕Y =
{
x+ y

∣∣x ∈ X, y ∈ Y }. The

relation ≤ between two matrices of the same size is interpreted element-wise. The

transpose of matrix M is denoted by MT . The unit-vector in ith direction and the

vector of all ones in Rn are denoted by e[i] and 1n, respectively. The absolute value

of x ∈ R is shown by |x|, and the p-norm of x ∈ Rn is denoted by ‖x‖p. The unit

p-norm ball is Bp := {x ∈ Rn
∣∣ ‖x‖p ≤ 1}. The convex hull of a set S is denoted by

Convh(S).
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9.1 Problem Statement

Informally, the goal is to use data gathered from an unknown system to design a

control policy such that an STL formula over predicates on state is satisfied for all

closed-loop trajectories originating from a designated set of initial conditions. If STL

satisfaction is not possible, we still want to compute the control policy resulting in

the least worst-case STL violation. We formalize this problem in this section.

9.1.1 System and Assumptions

Definition 47. Given a workspace X ⊂ Rn and an admissible set of inputs U ⊂ Rm,

a control system F is defined as a triadic relation

F ⊂ X × U × Rn, (9.1)

which is left-total in the sense that ∀x ∈ X, ∀u ∈ U,∃x+ ∈ Rn such that (x, u, x+) ∈

F .

Sets X and U are assumed to be compact and locally connected in their respective

domain. Note that we have not assumed that X is invariant for all controls. It may

be possible that ∃(x, u, x+) ∈ F such that x ∈ X, u ∈ U , but x+ 6∈ X. Keeping the

state within the workspace is a non-trivial task that is an implicit objective of our

problem. A control system F is deterministic if for all (x1, u1, x
+
1 ), (x2, u2, x

+
2 ) ∈ F ,

x1 = x2 and u1 = u2 implies x+
1 = x+

2 .

Definition 48. A control policy µ : X∗ → U is a function that determines the control

input at time t as a feedback of the history of the system:

u[t] = µ(x[0]x[1] · · ·x[t]). (9.2)
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Definition 49. Given a control system F , a control policy µ, a set of initial conditions

X0 ⊆ X, we define the closed-loop language as L = L(F , X0, µ) ⊂ Xω such that

x[0]x[1] · · · ∈ L if and only if x[0] ∈ X0 and

(x[k], µ(x[0]x[1] · · ·x[k]), x[k + 1]) ∈ F ,∀k ∈ N.

Assumption 7. (Closed-loop language non-emptiness) There exists a control policy µ

such that for some X0 ⊆ X, we have L(F , X0, µ) 6= ∅.

Assumption 7 is trivially essential for our purpose. Otherwise, it is not possible

to keep the system in the workspace. Assumption 7 can be relaxed for applications

that the objective can be accomplished in finite time and the system state is allowed

to exit the workspace afterwards. In this chapter, our emphasis is on infinite-time

properties and finite-time specifications are treated as a special case.

We assume no knowledge of F , which we refer to as the concrete control system,

except the following assumptions.

Assumption 8. (Data Points) We are given a set of N data points

D :=
{

(xi, ui, x
+
i ) ∈ F

}
i=1,··· ,N .

Assumption 8 is not restrictive as we are often able to estimate the system state,

apply some control input, and measure the subsequent state. In this setting, we

treat the system as an input-output black-box. Assumption 8 may also prove useful

when some analytical form of F is available, but is too complex to use for control

synthesis purposes. In this case, we may sample data points from F rather than use

its analytical form.
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Assumption 9. (Continuity bounds) We are given non-negative constants κ0, κx, κu,

referred to as continuity constants, such that for all (x1, u1, x
+
1 ), (x2, u2, x

+
2 ) ∈ F , the

following relation holds:

∥∥x+
2 − x+

1

∥∥
p
≤ κ0 + κx ‖x2 − x1‖p + κu ‖u2 − u1‖p , (9.3)

where p ≥ 1 is a choice of norm.

Constant κ0 characterizes the degree of non-determinism in F and κx, κu char-

acterize how continuous (in a Lipschitz sense) F is on X and U . If we know F is

deterministic, we let κ0 = 0. The assumption that the evolution of a physical sys-

tem is continuous in state and controls is reasonable. Even many hybrid systems

demonstrate continuity in the Lipschitz sense. Therefore, there always exists con-

stants κ0, κx, κu such that (9.3) holds. The stronger assumption that we make in

Assumption 9 is that we know the values of continuity constants. Note that κ0, κx, κu

do not need to be the best constants. In other words, the inequality (9.3) does not

need to be tight. Any upper-bound for the best values of κ0, κx, κu is sufficient for

the soundness of the results in this chapter, but very large values obviously lead to

excessive conservatism.

Any guarantee is provided against the values of constants in Assumption 9. Es-

timating the continuity constants using data points in D is not a sound approach

since it is always possible to observe new data points that falsify the validity of the

estimated constants. However, in practice, there might not be any other option than

using D for estimating the continuity constants. One way to approach this issue

is multiplying the tightest estimates for continuity constants by some safety factor,

depending on the application. There exists several methods for estimating Lipschitz

constants from data [Milanese and Novara, 2004,Calliess, 2017].
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9.1.2 STL Specification

We are given a STL formula ϕ in the bounded-global form. The predicates of ϕ are

considered to be linear over state:

Pi := (πTi x ≤ ζi), (9.4)

where πi ∈ Rn, i = 1, · · · , nP , - nP is the number of predicates, and ζi ∈ R. We also

define

Π :=
(
πT1 · · · πTnP

)T
. (9.5)

Matrix Π ∈ RnP×n characterizes the sensitivity of the predicates to changes in the

state. We do not formulate predicates over controls but the state may be extended

to include controls (see, e.g., [Rungger et al., 2013]).

9.1.3 Problem Formulation

Problem 12. Given data points D from a control system F as in (9.1), constants

κ0, κx, κu corresponding to Assumption 9, an STL formula ϕ over predicates in the

form of (9.4), find an optimal control policy µ∗ and and a set of initial conditions

X∗0 ⊆ X such that:

(X∗0 , µ
∗) = argmax

X0,µ
ε

subject to L(F , X0, µ) ⊆ L(ϕ, ε).
(9.6)

Our framework is able to accommodate slight variations of Problem 12. For

instance, X0 may be fixed by a user-specified set or point. We may also consider

some weighted cost functions added to ε, such as penalizing the controls or distance

from a reference trajectory.
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9.2 Approach

Our solution to Problem 12 has two main steps. First, we construct a model from D

and continuity constants. Our model has to serve two purposes: i) it has to contain all

the behaviors of F , as formalized shortly, and ii) has to be simple enough for control

synthesis. We choose PWA models with user-specified number of modes - formally

defined in Sec. 9.3.1. PWA models are able to capture arbitrarily high nonlinearities

by increasing the number of modes in exchange for higher computational complexity

- both in identifying the model and also synthesis based on the model. We focus on a

a particular class of control strategies that are computationally tractable to compute.

Therefore, completeness may be lost and we may obtain suboptimal solutions for

Problem 12. However, we do not trade off correctness. Once our method returns

some ε∗ for Problem 12, we have the guarantee that all closed-loop trajectories of F

are in ε∗-language of ϕ.

Definition 50. Given two systems F ⊂ X × U × Rn and G ⊂ X × U × Rn, we say G

simulates F if and only if F ⊆ G.

Definition 50 is reminiscent of simulation relation in concurrent systems [Tabuada,

2008, Belta et al., 2017]. Here we do not define simulation relation with respect to

a particular equivalence class - here every state is equivalent only to itself and no

abstraction is used. Simulation is a partial order relation since the following properties

hold: F simulates F ; If G simulates F and H simulates G, then H simulates F ; If G

simulates F and vice-versa, then F = G. The following result holds from language

inclusion properties of simulation relation [Belta et al., 2017].

Lemma 5. If G simulates F , then for all µ and X0 we have L(F , X0, µ) ⊆ L(G, X0, µ).
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9.3 Formal Model Identification

In this section, we introduce a method to identify a set-valued PWA model using data

and continuity bounds.

Definition 51. Given data points D = {(xi, ui, x+
i )}i=1,··· ,N from an unknown control

system F ⊂ X × U × Rn, constants κ0, κx, κu corresponding to Assumption 9, the

tightest simulating control system F ⊂ X × U × Rn is defined such that for all

(x, u, x+) ∈ F , the following holds:

x+ ∈
N⋂
i=1

{
{x+

i } ⊕ kx‖x− xi‖pBp ⊕ ku‖u− ui‖pBp ⊕ k0Bp
}
.

Lemma 6. The following properties hold: 1) F ⊆ F ; 2) For any G that is guaranteed

to simulate F , we have F ⊆ G.

Proof. 1) The proof follows from two facts that establish F ⊆ F . First, we require

(xi, ui, x
+
i ) ∈ F , i = 1, · · · , N . Second, any point that is included in F is sufficiently

close to other data points in the sense of (9.3). 2) If there exists G simulating F such

that F 6⊂ G, then there exists some (xs, us, x
+
s ) ∈ F that is allowed to be in F by

Assumption 9. Thus, F ⊆ G does not necessarily hold.

We may use F for control synthesis, but its representation is data-size dependent

and is often too complex. We need simpler forms of systems that simulates F (and

hence F).
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9.3.1 PWA Systems

Definition 52. A control system G ⊂ X×U ×Rn is PWA if ∀x ∈ X, ∀u ∈ U , we have

(x, u, x+) ∈ G if and only if

x+ ∈


{A1x+B1u+ c1} ⊕W1, x ∈ X1,
...

...
{AMx+BMu+ cM} ⊕WM, x ∈ XM,

(9.7)

where Xi, i = 1, · · · ,M, are polyhedral sets with disjoint interiors,
⋃M
i=1(Xi) = X,

M is the number of modes, and Wi ∈ Rn, i = 1, · · · ,M, are polytopic sets of additive

disturbances. Each mode is an affine system with constants Ai ∈ Rn×n, Bi ∈ Rn×m

and ci ∈ Rn.

In the rest of this section, we propose a method to solve the following subproblem:

SubProblem 1. Given data points D from control system F ⊂ X ×U ×Rn, constants

κ0, κx, κu corresponding to Assumption 9, find a PWA control system G, where an

upper-bound for M is given, such that F ⊆ G and minimize α(W1, · · · ,WM), where

α : (2Rn)
M → R is a cost function that promotes smaller disturbance sets..

The reason that we add a cost criteria to Subproblem 1 is that a PWA G that

simulates F is not unique. In fact, by making the disturbance sets sufficiently large,

G can simulate any system. Having large disturbance sets is undesirable for control

synthesis. For computational purposes, we focus on simple forms of disturbance sets

and α. For example, we let Wi, i = 1, · · · ,M , to be axis-aligned hyper-boxes and α

is designed to penalize the length of their sides.
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9.3.2 PWA Fitting

Here we simultaneously find values representing the sets Xi, and matrices Ai, Bi, ci

in (7.17) by solving an optimization problem. We find sets Wi afterwards, Consider

K ∈ N+ hyperplanes - which we refer to as guards :

hTi x+ 1 = 0, (9.8)

where hi ∈ Rn, i = i = 1, · · · , K. These guards partition X into at most 2K polyhe-

dral sets with disjoint interiors:

Xk =
{
x ∈ X

∣∣hTi x+ 1
(k,i)∼ 0, i = 1, · · · , K

}
, k = 1, · · · , 2K , (9.9)

where ∼: N+ ×N+ → {≤,≥} is defined in the following way:
(k,i)∼ is ≥ if the ith digit

from the right of k written in binary numeral system is one, and ≤ otherwise. For

example, for k = 5, we have 5 = (101)2. Hence
(5,1)∼ =≥, (5,2)∼ =≤ and

(5,3)∼ =≥. We

interpret further digits on the left as zero:
(5,i)∼ =≤, i > 3. Not all the sets in (9.9) may

not be non-empty. The set of decision parameters are

Θ :=
{
{Ak, Bk, ck, }i=1,··· ,2K , {hi, }i=1,··· ,K

}

The best values for Θ are found using the following optimization problem:

Θ∗ = arg min
Θ

δ

subject to
∣∣x+
j − (Aixj +Bkuj + ck)

∣∣zkj ≤ δ1n,

zkj = 1⇔ xj ∈ Xk, z
k
j = 0⇔ xj 6∈ Xk,

Xk, k = 1, · · · , 2K , given by (9.9), (9.8),
j = 1, · · · , N, i = 1, · · · , K,

(9.10)
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where δ is error. Eq. (9.10) finds the best PWA fit (additive disturbances are not yet

considered) such that all data points are within δB∞ of their predications.

Since all the values and sets are bounded, we show that (9.10) can be cast as a

MILP problem using the big-M method. First, the expression
∣∣x+
j − (Aixj + Bkuj +

ck)
∣∣zkj ≤ δ1n is equivalent to the following set of constraints:

{
−M(1− zkj ) ≤ x+

j − Aixj −Bkuj − ck + δkj ≤M(1− zkj ),

−δ1n ≤ δkj ≤ δ1n,

where δkj ∈ Rn are auxilary variables and M is a sufficiently large positive num-

ber. Second, we need to capture (9.9). We define K binaries for each data point,

introducing a total of NK binary variables. We have

bij = I(hTi xj + 1 ≥ 0)⇔
{
hTi xj + 1 ≤Mbij,

hTi xj + 1 ≥ −M(1− bij).

The relation zkj = I(xkj ∈ Xk) can be converted to: zkj =
∧K
i=1 Sgn(k, i, bij), where

Sgn(k, i, bij) = bij if
k,i∼=≥, and is ¬bij otherwise. The conjunction and negation apply-

ing to integers is interpreted in a Boolean sense - e.g., 1 ∧ 0 = 0, 1 ∧ 1 = 0,¬1 = 0,

etc. The variables zkj ∈ [0, 1], j = 1, · · · , N, k = 1, · · · , 2K , are declared as continuous

variables, but always take binary variables. Encoding Boolean operations as mixed-

integer constraints is a standard procedure (see, e.g., [Bemporad and Morari, 1999])

and further details are not presented here.

9.3.3 Adjusting Disturbances

Now we find disturbance in (7.17) such that G simulates F . We let every disturbance

set to be represented by a hyper-box symmetric around the origin. The length of

the side in qth cartesian direction of Wi, q = 1, · · · , n, is found using the following



183

optimization problem:

ηi
∗
[q] = argmax

x,u,η

∣∣eT[q]ηi∣∣
subject to x+ = x+

j + k0β
0
j + kxβ

x
j + kuβ

u
j

βxj ∈ ‖x− xj‖pBp,
βuj ∈ ‖u− uj‖pBp, ‖β0

j ‖∞ ∈ B∞
x+ = Aix+Biu+ ci + ηi
x ∈ Xi, u ∈ U, j = 1, · · · , N.

(9.11)

We let:

Wi = {w ∈ Rn| − η∗i ≤ w ≤ η∗i } (9.12)

Theorem 14. The PWA system constructed from solutions of (9.10), and (9.11),

(9.12), i = 1, · · · , 2K , simulates F .

Proof. Eq. (9.11) gives the farthest point (in the qth direction) in F from the model

given by (9.10). Since the worst-case distances are considered in each direction, the

sets in (9.12) establish F ⊆ G.

The following simple example shows that the distribution of data affects model

identification.

Example 21. Consider fitting a line (a single mode PWA model) to one-dimensional

data set of N = 4 points, shown by red circles in Fig. 9·1. There are no control

inputs. The box represents X. The relation F and the learned affine G are shown

by cyan and yellow regions, respectively. In the figure to the left, points are closer

to the edges of X, creating a vacuum of data in the center of X, which leads to

large non-determinism in G. On the other hand, data points on the right are more

evenly-spaced, leading to less non-deterministic G.

Remark 6. Overfitting arises when few data is used to decide about a large num-

ber of variables. Since our model identification is set-valued and takes into account
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x
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Figure 9·1: Example 21: The magnitude of non-determinism may
depend on the distribution of data.

all “other” possible data, overfitting is never an issue. Even with one single data

point, Definition (51) defines a set-valued model F with very large non-determinism

- virtually useless for control synthesis.

9.3.4 Computational Aspects

Eq. (9.10) is a MILP problem with NK binary variables and O(K max(n2, nm,Nn))

continuous variables. The worst-case complexity scales exponentially with the number

the number of binaries and polynomially with the number of continuous variables.

MILPs finds the global optimum. For large problems, we may terminate a MILP

early to obtain a suboptimal solution - after a feasible integer solution is found.

Eq. (9.11) is a non-convex optimization problem, that can also can be cast

as a MILP when p = 1,∞, where the number of its binary variables scales by

O(max(Nn,Nm)) and the number of continuous variables and constraints scale sim-

ilarly to (9.10). Validity of the continuity constants is implicit in the feasibility of

(9.11) - if k0, kx, ku are under-estimated then (9.11) may become infeasible.

In practice, exact solutions for (9.11) may unachievable. Heuristics can be used

to over-approximate the sets in (9.12). The value of δ found in (9.10) provides an
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lower bound for the sides of disturbance sets. As (9.11) is sensitive to the number of

data points, increasing the density of data decreases uncertainties in a linear fashion

- as illustrated in Fig. 9·1. Thus, a good heuristic is to solve (9.11) for small data

sets and accordingly adjust the values for larger data sets.

9.4 Example

Example 22. We adopt a controlled version of the genetic toggle switch model in

[Gardner et al., 2000]. The control system F is constructed from:

x+
[1] ∈

{
4
5
x[1] + 1

2(1+x3
[2]

)
+ e−

1
5
x[1][t]u[1]

}
⊕ 1

20
[−1, 1]

x+
[2] ∈

{
4
5
x[2] + 1

2(1+x2
[1]

)
+ e−

1
5
x[2][t]u[2]

}
⊕ 1

20
[−1, 1],

(9.13)

where X = [0, 1]2 and U = [−1, 1]2. The state components represent gene repressor

concentrations. The goal is to oscillate the concentration levels. The STL specification

is:

ϕ = G[0,∞]¬R0 ∧ F[0,10]R1 ∧G[10,∞](F[0,10]R1 ∧ F[0,10]R2), (9.14)

where R0, R1, R2 are conjunctions of predicates that characterize the regions illus-

trated in Fig. 9·2 (left). Specification (9.14) states that “within 10 time units, R1

has to be visited. Afterwards, R1 and R2 must be visited infinitely often while the

time between two consecutive visits is never greater than 10. Also, always avoid R0.”

Note that (9.13) is unknown to the controller. We sampled 400 evenly-distributed

data points from X × U . The number of guards is set to K = 2. We used (9.10) -

the computation time was about 5 minutes using Gurobi MILP solver - and obtained

the following guards and affine modes:
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Figure 9·2: Example 22: (Left): Regions of interest. (Right): Com-
puted polyhedral partition from (9.10).

h1 = (−1.5,−0.5)T , h2 = (0,−3.0)T , δ∗ = 0.07

A1=

 0.75 −0.38
−0.3 0.78

,B1=

 0.85 0.0
−0.0 0.85

,c1=

 0.66
0.56

,

A2=

 0.79 −0.04
−0.35 0.73

,B2=

 0.85 −0.01
0.01 0.97

,c2=

 0.5
0.6

,

A3=

 0.76 −0.4
−0.17 0.83

,B3=

 0.98 0.01
−0.01 0.86

,c3=

 0.66
0.48

,

A4=

 0.87 −0.01
−0.15 0.81

,B4=

 0.96 −0.0
0.01 0.97

,c4=

 0.49
0.5

,
The polyhedral partitions are shown in Fig. 9·2 (right). We set k0 = 0.05, kx =

1.5, ku = 1, which is verified both against (9.13) and data. Using the procedure

outline in Sec. 9.3.3, we solved (9.11) 8 times (2 for each mode) - the computation

times were about 15 seconds for each case - and obtained:

W1 = [−0.25, 0.25]× [−0.33, 0.33], W2 = [−0.13, 0.13]× [−0.28, 0.28],

W3 = [−0.28, 0.28]× [−0.21, 0.21], W4 = [−0.17, 0.17]× [−0.23, 0.23].

The tube was computed for Γ = 1. We found T = [−0.280.28] × [−0.33, 0.33] and
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Figure 9·3: Example 22 a sample closed-loop trajectory

Figure 9·4: Example 22 histogram of STL scores.

Tu = 0.39B∞. The nominal trajectory was computed for x0 = (0.65, 0.65)T , τ0 =

10, τp = 40, took 4 seconds to solve, and resulted in ε∗ = 0.13. Thus, we obtain the

guarantee that all the closed-loop trajectories of (9.13) are in the −0.2(= 0.13−0.33)-

language set. A sample trajectory of (9.13) is shown in Fig. 9·3. In simulations, we

observed STL scores were always greater than the guarantee (-0.2). A histogram of

STL scores for 1000 simulations of 60 time steps is shown in Fig. 9·4. The differences

between the worst-case theoretical STL score (denoted by red line) and the simulated

ones highlight the conservativeness of the methods in this chapter. All simulations

were performed by sampling disturbances in (9.13) uniformly from their respective

domains.
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Chapter 10

Conclusions

10.1 Summary of the thesis

In this thesis, we developed tools for formal synthesis of control strategies for systems

with bounded uncertainties. We focused on linear time properties expressed as signal

temporal logic. First, we developed a tube-based framework for optimal control of

disturbed piecewise affine systems. The method was conservative and heavily relied

on computational techniques for mixed-integer programs for both nominal trajectory

design and tube design. However, the implementation requires a modest convex

program to be solved online.

Regarding the mentioned difficulties, the focus was shifted toward systems and

requirements with specific structures. We extensively studied control synthesis for

a class of monotone systems, which was shown to include macroscopic traffic mod-

els. Using monotonicity, we showed that open-loop control policies are sufficient and

almost necessary for satisfying a broad range of temporal logic specifications. The

policies were synthesized quite efficiently for reasonably large systems. However, op-

timal control was not very scalable. We pursued contract-based design for distributed

optimal control. Two approaches were outlined. First, the contracts were designed

by decomposing robust control invariant sets. Second, compositional synthesis was
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used to find a rich library of contracts, where the best one was chosen in response to

the real-time conditions. Its usefulness was demonstrated through examples of mixed

urban-freeway networks. The second class of special systems was networked linear

systems with polyhedral constraints. We designed distributed set-invariance policies

subject to communication constraints. We also provided a method to find sparsest

communication topologies such that invariance inducing policies were possible.

Finally, we focused on scenarios that the model is initially unknown. We de-

veloped learning-based techniques. First, we assumed that there exists a family of

candidate models from which the controller infers the true one through recursive ob-

servations. Our method was complete for finite systems, whereas its usefulness for

infinite systems was dependent on the quality of the finite abstractions. Second, we

discussed constructing set-valued hybrid systems from input-output data. By assum-

ing knowledge of continuity bounds, in a Lipschitz sense, we constructed models that

were guaranteed to contain all the possible behaviors of the concrete system. There-

fore, we obtained formal guarantees for the performance of applying the control policy

designed for the learned PWA model to the concrete system.

10.2 Future Directions

Formal synthesis for automation of large-scale cyber-physical systems is still a largely

open area [Seshia et al., 2016]. Even though the principles of contract-based design

and compositional synthesis are not strictly dependent on the type of the system,

applying them to systems without linearity or monotonicity is very difficult. Future

research should develop tools for this matter.

Besides approaches discussed in this thesis, a possible opportunity to ease compu-

tational complexity is using event-driven-based formulation [Cassandras and Lafor-
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tune, 2009]. These approaches have the advantage that the complexity grows by the

size of event space, which is usually much smaller than state space. However, it is still

not clear how to combine optimal discrete-event control with formal specifications in

systems with infinitely-many states.

Another area that is largely open is combining control theoretic aspects of artificial

intelligence and formal methods. This thesis provided two approaches in this domain.

Specifically, Chapter 8 provided the complete solution to learning-based control for

finite systems. However, its scalability was poor. The data-driven model identification

approach needed a lot of data to be successful. There are paradigms in machine

learning, such as transfer learning [Raina et al., 2007], which are largely unexplored

in control theory. Future research will focus on new ways for learning-based control

with formal guarantees.
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Appendix A

Appendix

A.1 Bounded-Global Formula

Theorem 15. Let S be the set of all STL formulas that can be written in the form:

φ =

nφ∨
i=1

ϕb,i ∧G[∆i,∞]ϕg,i, (A.1)

where ϕb,i,∆i ≥ hϕb,i , ϕg,i, i = 1, · · · , nφ, are bounded STL formulas. Then S is a

subset of safety STL formulas that is closed under STL syntax with bounded temporal

operators.

Proof. First, a quick inspection of (A.1) verifies that it is a safety STL formula. A

predicate π is a bounded formula (with zero horizon) and is a special case of (A.1),

hence π ∈ S.

We also have the following property that relaxes the form in (A.1): For all bounded

STL formulas ϕ1, ϕ2, we have ϕ1 ∧ G[Γ,∞)ϕ2 ∈ S, ∀Γ ∈ N. Proof: The case for

Γ ≥ hϕ1 is already in the form (A.1) with nφ = 1. If Γ < hϕ1 , we write G[Γ,∞)ϕ2 =

G[Γ,hϕ1 ]ϕ2 ∧G[hϕ1 ,∞)ϕ2. Now, define ϕ1 ∧G[Γ,hϕ1 ]ϕ2 as the new bounded formula and

retain the form in (A.1) with nφ = 1.

We show that S is closed under STL syntax with bounded operators. The dis-

tributivity properties of Boolean connectives and temporal operators (see, e.g., [Huth,
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Michael and Ryan, Mark, 2004]) imply that: φ1 ∨ (φ2 ∧ φ3) = (φ1 ∨ φ2) ∧ (φ2 ∨ φ3),

φ1∧(φ2∨φ3) = (φ1∧φ2)∨(φ2∧φ3), FI(φ1∨φ2) = (FIφ1)∨(FIφ2), and GI(φ1∧φ2) =

(GIφ1) ∧ (GIφ2), where φ1, φ2, φ3 are temporal logic formulas and I is an interval.

1. φ1, φ2 ∈ S ⇒ φ1 ∧ φ2 ∈ S, φ1 ∨ φ2 ∈ S: this result easily follows from the

distributivity properties of Boolean connectives mentioned above.

2. φ ∈ S ⇒ F{t}φ ∈ S: we use F{t}G[a,b] = G[t+a,t+b] and distributivity to have

(note that F{t} = G{t})

F{t}(
∨nφ
i=1(ϕb,i ∧G[Γi,∞]ϕg,i))

=
∨nφ
i=1(F{t}ϕb,i ∧G[t+Γi,∞]ϕg,i).

Introducing F{t}ϕb,i, i = 1, · · · , nφ, as new bounded STL formulas leads to the

form in (A.1).

3. φ ∈ S ⇒ F[a,b]φ ∈ S,G[a,b]φ ∈ F: use F[a,b] =
∨
t∈[a,b] F{t} and G[a,b] =∧

t∈[a,b] F{t} to convert temporal operators to Boolean connectives.

4. φ1, φ2 ∈ S ⇒ φ1U[a,b]φ2 ∈ S: use the STL semantics Definition 7 to substi-

tute the bounded “until” operator using bounded “eventually” and bounded

“always” operators:

φ1U[a,b]φ2 =
∨
t∈[a,b](G[a,t]φ1 ∧ F{t}φ2).

Example 23. The “reach and stay” formula FIG[0,∞)ϕ, where ϕ is a bounded formula,

is equivalent to
∨
t∈I G[t,∞)ϕ.

Remark 7. What remains to show that S is equivalent to the set of all safety STL

formulas is having that φ ∈ S ⇒ G[Γ′,∞)φ ∈ S,∀Γ ∈ N, which is not true by re-

stricting nφ in (A.1) to be finite. Formulas that involve nested unbounded “always”
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operator and can not be further simplified, such as G[Γ′,∞)(ϕ1 ∨G[Γ,∞)ϕ2), are rarely

encountered in applications.
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control of constrained linear systems with bounded disturbances. Automatica,
41(2):219–224.

Mehr, N., Sadigh, D., Horowitz, R., Sastry, S. S., and Seshia, S. A. (2017). Stochastic
predictive freeway ramp metering from signal temporal logic specifications. In 2017
American Control Conference (ACC), pages 4884–4889. IEEE.

Meyer, P.-J., Girard, A., and Witrant, E. (2016). Robust controlled invariance for
monotone systems: application to ventilation regulation in buildings. Automatica,
70:14–20.

Milanese, M. and Novara, C. (2004). Set membership identification of nonlinear
systems. Automatica, 40(6):957–975.



202

Milner, R. (1989). Communication and concurrency. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

Mirchandani, P. and Head, L. (2001). A real-time traffic signal control system:
Architecture, algorithms, and analysis. Transportation Research Part C: Emerging
Technologies, 9(6):415–432.

Mitchell, I. M., Bayen, A. M., and Tomlin, C. J. (2005). A time-dependent hamilton-
jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans-
actions on Automatic Control, 50(7):947–957.

Morse, A. S. (1996). Supervisory control of families of linear set-point controllers-part
i. exact matching. IEEE Transactions on Automatic Control, 41(10):1413–1431.

Narendra, K. S. and Xiang, C. (2000). Adaptive control of discrete-time systems
using multiple models. IEEE Transactions on Automatic Control, 45(9):1669–
1686.

Nilsson, P. and Ozay, N. (2014). Incremental synthesis of switching protocols via
abstraction refinement. In 53rd IEEE Conference on Decision and Control (CDC),
pages 6246–6253. IEEE.

Nilsson, P. and Ozay, N. (2016). Synthesis of separable controlled invariant sets for
modular local control design. In 2016 American Control Conference (ACC), pages
5656–5663. IEEE.

Ouaknine, J. and Worrell, J. (2006). Safety metric temporal logic is fully decidable.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 411–425. Springer.

Paoletti, S., Juloski, A. L., Ferrari-Trecate, G., and Vidal, R. (2007). Identification
of hybrid systems a tutorial. European journal of control, 13(2-3):242–260.

Pnueli, A. (1977). The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science, 1977, pages 46–57. IEEE.

Pola, G., Girard, A., and Tabuada, P. (2008). Approximately bisimilar symbolic
models for nonlinear control systems. Automatica, 44(10):2508–2516.

Pola, G. and Tabuada, P. (2009). Symbolic models for nonlinear control systems: Al-
ternating approximate bisimulations. SIAM Journal on Control and Optimization,
48(2):719–733.

Raina, R., Battle, A., Lee, H., Packer, B., and Ng, A. Y. (2007). Self-taught learning:
transfer learning from unlabeled data. In Proceedings of the 24th international
conference on Machine learning, pages 759–766. ACM.



203
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