3 research outputs found

    A calculus and logic of bunched resources and processes

    Get PDF
    Mathematical modelling and simulation modelling are fundamental tools of engineering, science, and social sciences such as economics, and provide decision-support tools in management. Mathematical models are essentially deployed at all scales, all levels of complexity, and all levels of abstraction. Models are often required to be executable, as a simulation, on a computer. We present some contributions to the process-theoretic and logical foundations of discrete-event modelling with resources and processes. Building on previous work in resource semantics, process calculus, and modal logic, we describe a process calculus with an explicit representation of resources in which processes and resources co-evolve. The calculus is closely connected to a substructural modal logic that may be used as a specification language for properties of models. In contrast to earlier work, we formulate the resource semantics, and its relationship with process calculus, in such a way that we obtain soundness and completeness of bisimulation with respect to logical equivalence for the naturally full range of logical connectives and modalities. We give a range of examples of the use of the process combinators and logical structure to describe system structure and behaviour

    A substructural modal logic of utility

    Get PDF
    We introduce a substructural modal logic of utility that can be used to reason aboutoptimality with respect to properties of states. Our notion of state is quite general, and is able to represent resource allocation problems in distributed systems. The underlying logic is a variant of the modal logic of bunched implications, and based on resource semantics, which is closely related to concurrent separation logic. We consider a labelled transition semantics and establish conditions under which Hennessy—Milner soundness and completeness hold. By considering notions of cost, strategy and utility, we are able to formulate characterizations of Pareto optimality, best responses, and Nash equilibrium within resource semantics. We also show that our logic is able to serve as a logic for a fully featured process algebra and explain the interaction between utility and the structure of processes

    Compositional Security Modelling Structure, Economics, and Behaviour

    Get PDF
    Security managers face the challenge of formulating and implementing policies that deliver their desired system security postures — for example, their preferred balance of confidentiality, integrity, and availability — within budget (monetary and otherwise). In this paper, we describe a security modelling methodology, grounded in rigorous mathematical systems modelling and economics, that captures the managers’ policies and the behavioural choices of agents operating within the system. Models are executable, so allowing systematic experimental exploration of the system-policy co-design space, and compositional, so managing the complexity of large-scale systems
    corecore