120 research outputs found

    Neural Sequence-to-grid Module for Learning Symbolic Rules

    Full text link
    Logical reasoning tasks over symbols, such as learning arithmetic operations and computer program evaluations, have become challenges to deep learning. In particular, even state-of-the-art neural networks fail to achieve \textit{out-of-distribution} (OOD) generalization of symbolic reasoning tasks, whereas humans can easily extend learned symbolic rules. To resolve this difficulty, we propose a neural sequence-to-grid (seq2grid) module, an input preprocessor that automatically segments and aligns an input sequence into a grid. As our module outputs a grid via a novel differentiable mapping, any neural network structure taking a grid input, such as ResNet or TextCNN, can be jointly trained with our module in an end-to-end fashion. Extensive experiments show that neural networks having our module as an input preprocessor achieve OOD generalization on various arithmetic and algorithmic problems including number sequence prediction problems, algebraic word problems, and computer program evaluation problems while other state-of-the-art sequence transduction models cannot. Moreover, we verify that our module enhances TextCNN to solve the bAbI QA tasks without external memory.Comment: 9 pages, 9 figures, AAAI 202

    A survey of cross-lingual word embedding models

    Get PDF
    Cross-lingual representations of words enable us to reason about word meaning in multilingual contexts and are a key facilitator of cross-lingual transfer when developing natural language processing models for low-resource languages. In this survey, we provide a comprehensive typology of cross-lingual word embedding models. We compare their data requirements and objective functions. The recurring theme of the survey is that many of the models presented in the literature optimize for the same objectives, and that seemingly different models are often equivalent, modulo optimization strategies, hyper-parameters, and such. We also discuss the different ways cross-lingual word embeddings are evaluated, as well as future challenges and research horizons.</jats:p

    Inducing Systematicity in Transformers by Attending to Structurally Quantized Embeddings

    Full text link
    Transformers generalize to novel compositions of structures and entities after being trained on a complex dataset, but easily overfit on datasets of insufficient complexity. We observe that when the training set is sufficiently complex, the model encodes sentences that have a common syntactic structure using a systematic attention pattern. Inspired by this observation, we propose SQ-Transformer (Structurally Quantized) that explicitly encourages systematicity in the embeddings and attention layers, even with a training set of low complexity. At the embedding level, we introduce Structure-oriented Vector Quantization (SoVQ) to cluster word embeddings into several classes of structurally equivalent entities. At the attention level, we devise the Systematic Attention Layer (SAL) and an alternative, Systematically Regularized Layer (SRL) that operate on the quantized word embeddings so that sentences of the same structure are encoded with invariant or similar attention patterns. Empirically, we show that SQ-Transformer achieves stronger compositional generalization than the vanilla Transformer on multiple low-complexity semantic parsing and machine translation datasets. In our analysis, we show that SoVQ indeed learns a syntactically clustered embedding space and SAL/SRL induces generalizable attention patterns, which lead to improved systematicity.Comment: 22 pages, code: https://github.com/jiangycTarheel/SQ-Transforme

    A Short Survey of Systematic Generalization

    Full text link
    This survey includes systematic generalization and a history of how machine learning addresses it. We aim to summarize and organize the related information of both conventional and recent improvements. We first look at the definition of systematic generalization, then introduce Classicist and Connectionist. We then discuss different types of Connectionists and how they approach the generalization. Two crucial problems of variable binding and causality are discussed. We look into systematic generalization in language, vision, and VQA fields. Recent improvements from different aspects are discussed. Systematic generalization has a long history in artificial intelligence. We could cover only a small portion of many contributions. We hope this paper provides a background and is beneficial for discoveries in future work

    Foundations and Recent Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions

    Full text link
    Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design computer agents with intelligent capabilities such as understanding, reasoning, and learning through integrating multiple communicative modalities, including linguistic, acoustic, visual, tactile, and physiological messages. With the recent interest in video understanding, embodied autonomous agents, text-to-image generation, and multisensor fusion in application domains such as healthcare and robotics, multimodal machine learning has brought unique computational and theoretical challenges to the machine learning community given the heterogeneity of data sources and the interconnections often found between modalities. However, the breadth of progress in multimodal research has made it difficult to identify the common themes and open questions in the field. By synthesizing a broad range of application domains and theoretical frameworks from both historical and recent perspectives, this paper is designed to provide an overview of the computational and theoretical foundations of multimodal machine learning. We start by defining two key principles of modality heterogeneity and interconnections that have driven subsequent innovations, and propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification covering historical and recent trends. Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches. We end by motivating several open problems for future research as identified by our taxonomy

    Weakly Supervised Visual Semantic Parsing

    Full text link
    Scene Graph Generation (SGG) aims to extract entities, predicates and their semantic structure from images, enabling deep understanding of visual content, with many applications such as visual reasoning and image retrieval. Nevertheless, existing SGG methods require millions of manually annotated bounding boxes for training, and are computationally inefficient, as they exhaustively process all pairs of object proposals to detect predicates. In this paper, we address those two limitations by first proposing a generalized formulation of SGG, namely Visual Semantic Parsing, which disentangles entity and predicate recognition, and enables sub-quadratic performance. Then we propose the Visual Semantic Parsing Network, VSPNet, based on a dynamic, attention-based, bipartite message passing framework that jointly infers graph nodes and edges through an iterative process. Additionally, we propose the first graph-based weakly supervised learning framework, based on a novel graph alignment algorithm, which enables training without bounding box annotations. Through extensive experiments, we show that VSPNet outperforms weakly supervised baselines significantly and approaches fully supervised performance, while being several times faster. We publicly release the source code of our method.Comment: To be presented at CVPR 2020 (oral paper
    corecore