3,191 research outputs found

    Almost diagonal matrices and Besov-type spaces based on wavelet expansions

    Full text link
    This paper is concerned with problems in the context of the theoretical foundation of adaptive (wavelet) algorithms for the numerical treatment of operator equations. It is well-known that the analysis of such schemes naturally leads to function spaces of Besov type. But, especially when dealing with equations on non-smooth manifolds, the definition of these spaces is not straightforward. Nevertheless, motivated by applications, recently Besov-type spaces BΨ,qα(Lp(Γ))B^\alpha_{\Psi,q}(L_p(\Gamma)) on certain two-dimensional, patchwise smooth surfaces were defined and employed successfully. In the present paper, we extend this definition (based on wavelet expansions) to a quite general class of dd-dimensional manifolds and investigate some analytical properties (such as, e.g., embeddings and best nn-term approximation rates) of the resulting quasi-Banach spaces. In particular, we prove that different prominent constructions of biorthogonal wavelet systems Ψ\Psi on domains or manifolds Γ\Gamma which admit a decomposition into smooth patches actually generate the same Besov-type function spaces BΨ,qα(Lp(Γ))B^\alpha_{\Psi,q}(L_p(\Gamma)), provided that their univariate ingredients possess a sufficiently large order of cancellation and regularity (compared to the smoothness parameter α\alpha of the space). For this purpose, a theory of almost diagonal matrices on related sequence spaces bp,qα()b^\alpha_{p,q}(\nabla) of Besov type is developed. Keywords: Besov spaces, wavelets, localization, sequence spaces, adaptive methods, non-linear approximation, manifolds, domain decomposition.Comment: 38 pages, 2 figure

    Multilevel Preconditioning of Discontinuous-Galerkin Spectral Element Methods, Part I: Geometrically Conforming Meshes

    Get PDF
    This paper is concerned with the design, analysis and implementation of preconditioning concepts for spectral Discontinuous Galerkin discretizations of elliptic boundary value problems. While presently known techniques realize a growth of the condition numbers that is logarithmic in the polynomial degrees when all degrees are equal and quadratic otherwise, our main objective is to realize full robustness with respect to arbitrarily large locally varying polynomial degrees degrees, i.e., under mild grading constraints condition numbers stay uniformly bounded with respect to the mesh size and variable degrees. The conceptual foundation of the envisaged preconditioners is the auxiliary space method. The main conceptual ingredients that will be shown in this framework to yield "optimal" preconditioners in the above sense are Legendre-Gauss-Lobatto grids in connection with certain associated anisotropic nested dyadic grids as well as specially adapted wavelet preconditioners for the resulting low order auxiliary problems. Moreover, the preconditioners have a modular form that facilitates somewhat simplified partial realizations. One of the components can, for instance, be conveniently combined with domain decomposition, at the expense though of a logarithmic growth of condition numbers. Our analysis is complemented by quantitative experimental studies of the main components.Comment: 41 pages, 11 figures; Major revision: rearrangement of the contents for better readability, part on wavelet preconditioner adde

    Besov regularity for operator equations on patchwise smooth manifolds

    Full text link
    We study regularity properties of solutions to operator equations on patchwise smooth manifolds Ω\partial\Omega such as, e.g., boundaries of polyhedral domains ΩR3\Omega \subset \mathbb{R}^3. Using suitable biorthogonal wavelet bases Ψ\Psi, we introduce a new class of Besov-type spaces BΨ,qα(Lp(Ω))B_{\Psi,q}^\alpha(L_p(\partial \Omega)) of functions u ⁣:ΩCu\colon\partial\Omega\rightarrow\mathbb{C}. Special attention is paid on the rate of convergence for best nn-term wavelet approximation to functions in these scales since this determines the performance of adaptive numerical schemes. We show embeddings of (weighted) Sobolev spaces on Ω\partial\Omega into BΨ,τα(Lτ(Ω))B_{\Psi,\tau}^\alpha(L_\tau(\partial \Omega)), 1/τ=α/2+1/21/\tau=\alpha/2 + 1/2, which lead us to regularity assertions for the equations under consideration. Finally, we apply our results to a boundary integral equation of the second kind which arises from the double layer ansatz for Dirichlet problems for Laplace's equation in Ω\Omega.Comment: 42 pages, 3 figures, updated after peer review. Preprint: Bericht Mathematik Nr. 2013-03 des Fachbereichs Mathematik und Informatik, Universit\"at Marburg. To appear in J. Found. Comput. Mat
    corecore