3,710 research outputs found

    DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model

    Full text link
    The goal of this paper is to advance the state-of-the-art of articulated pose estimation in scenes with multiple people. To that end we contribute on three fronts. We propose (1) improved body part detectors that generate effective bottom-up proposals for body parts; (2) novel image-conditioned pairwise terms that allow to assemble the proposals into a variable number of consistent body part configurations; and (3) an incremental optimization strategy that explores the search space more efficiently thus leading both to better performance and significant speed-up factors. Evaluation is done on two single-person and two multi-person pose estimation benchmarks. The proposed approach significantly outperforms best known multi-person pose estimation results while demonstrating competitive performance on the task of single person pose estimation. Models and code available at http://pose.mpi-inf.mpg.deComment: ECCV'16. High-res version at https://www.d2.mpi-inf.mpg.de/sites/default/files/insafutdinov16arxiv.pd

    Optimal Monetary Policy Under Uncertainty in DSGE Models: A Markov Jump-Linear-Quadratic Approach

    Get PDF
    We study the design of optimal monetary policy under uncertainty in a dynamic stochastic general equilibrium model. We use a Markov jump-linear-quadratic (MJLQ) approach to study policy design, proxying the uncertainty by different discrete modes in a Markov chain, and by taking mode-dependent linear-quadratic approximations of the underlying model. This allows us to apply a powerful methodology with convenient solution algorithms that we have developed. We apply our methods to a benchmark new-Keynesian model, analyzing how policy is affected by uncertainty, and how learning and active testing affect policy and losses.

    An overview of Mirjam and WeaveC

    Get PDF
    In this chapter, we elaborate on the design of an industrial-strength aspectoriented programming language and weaver for large-scale software development. First, we present an analysis on the requirements of a general purpose aspect-oriented language that can handle crosscutting concerns in ASML software. We also outline a strategy on working with aspects in large-scale software development processes. In our design, we both re-use existing aspect-oriented language abstractions and propose new ones to address the issues that we identified in our analysis. The quality of the code ensured by the realized language and weaver has a positive impact both on maintenance effort and lead-time in the first line software development process. As evidence, we present a short evaluation of the language and weaver as applied today in the software development process of ASML

    Input Synthesis for Sampled Data Systems by Program Logic

    Full text link
    Inspired by a concrete industry problem we consider the input synthesis problem for hybrid systems: given a hybrid system that is subject to input from outside (also called disturbance or noise), find an input sequence that steers the system to the desired postcondition. In this paper we focus on sampled data systems--systems in which a digital controller interrupts a physical plant in a periodic manner, a class commonly known in control theory--and furthermore assume that a controller is given in the form of an imperative program. We develop a structural approach to input synthesis that features forward and backward reasoning in program logic for the purpose of reducing a search space. Although the examples we cover are limited both in size and in structure, experiments with a prototype implementation suggest potential of our program logic based approach.Comment: In Proceedings HAS 2014, arXiv:1501.0540

    Prediction of blast-induced air overpressure using a hybrid machine learning model and gene expression programming (GEP) : a case study from an iron ore mine

    Get PDF
    Mine blasting can have a destructive effect on the environment. Among these effects, air overpressure (AOp) is a major concern. Therefore, a careful assessment of the AOp intensity should be conducted before any blasting operation in order to minimize the associated environmental detriment. Several empirical models have been established to predict and control AOp. However, the current empirical methods have many limitations, including low accuracy, poor generalizability, consideration only of linear relationships among influencing parameters, and investigation of only a few influencing parameters. Thus, the current research presents a hybrid model which combines an extreme gradient boosting algorithm (XGB) with grey wolf optimization (GWO) for accurately predicting AOp. Furthermore, an empirical model and gene expression programming (GEP) were used to assess the validity of the hybrid model (XGB-GWO). An analysis of 66 blastings with their corresponding AOp values and influential parameters was conducted to achieve the goals of this research. The efficiency of AOp prediction methods was evaluated in terms of mean absolute error (MAE), coefficient of determination (R 2 ), and root mean square error (RMSE). Based on the calculations, the XGB-GWO model has performed as well as the empirical and GEP models. Next, the most significant parameters for predicting AOp were determined using a sensitivity analysis. Based on the analysis results, stemming length and rock quality designation (RQD) were identified as two variables with the greatest influence. This study showed that the proposed XGB-GWO method was robust and applicable for predicting AOp driven by blasting operations
    corecore