497 research outputs found

    Efficient image copy detection using multi-scale fingerprints

    Get PDF
    Inspired by multi-resolution histogram, we propose a multi-scale SIFT descriptor to improve the discriminability. A series of SIFT descriptions with different scale are first acquired by varying the actual size of each spatial bin. Then principle component analysis (PCA) is employed to reduce them to low dimensional vectors, which are further combined into one 128-dimension multi-scale SIFT description. Next, an entropy maximization based binarization is employed to encode the descriptions into binary codes called fingerprints for indexing the local features. Furthermore, an efficient search architecture consisting of lookup tables and inverted image ID list is designed to improve the query speed. Since the fingerprint building is of low-complexity, this method is very efficient and scalable to very large databases. In addition, the multi-scale fingerprints are very discriminative such that the copies can be effectively distinguished from similar objects, which leads to an improved performance in the detection of copies. The experimental evaluation shows that our approach outperforms the state of the art methods.Inspired by multi-resolution histogram, we propose a multi-scale SIFT descriptor to improve the discriminability. A series of SIFT descriptions with different scale are first acquired by varying the actual size of each spatial bin. Then principle component analysis (PCA) is employed to reduce them to low dimensional vectors, which are further combined into one 128-dimension multi-scale SIFT description. Next, an entropy maximization based binarization is employed to encode the descriptions into binary codes called fingerprints for indexing the local features. Furthermore, an efficient search architecture consisting of lookup tables and inverted image ID list is designed to improve the query speed. Since the fingerprint building is of low-complexity, this method is very efficient and scalable to very large databases. In addition, the multi-scale fingerprints are very discriminative such that the copies can be effectively distinguished from similar objects, which leads to an improved performance in the detection of copies. The experimental evaluation shows that our approach outperforms the state of the art methods

    Hashing for Similarity Search: A Survey

    Full text link
    Similarity search (nearest neighbor search) is a problem of pursuing the data items whose distances to a query item are the smallest from a large database. Various methods have been developed to address this problem, and recently a lot of efforts have been devoted to approximate search. In this paper, we present a survey on one of the main solutions, hashing, which has been widely studied since the pioneering work locality sensitive hashing. We divide the hashing algorithms two main categories: locality sensitive hashing, which designs hash functions without exploring the data distribution and learning to hash, which learns hash functions according the data distribution, and review them from various aspects, including hash function design and distance measure and search scheme in the hash coding space

    Voronoi-Based Compact Image Descriptors: Efficient Region-of-Interest Retrieval With VLAD and Deep-Learning-Based Descriptors

    Get PDF
    We investigate the problem of image retrieval based on visual queries when the latter comprise arbitrary regionsof- interest (ROI) rather than entire images. Our proposal is a compact image descriptor that combines the state-of-the-art in content-based descriptor extraction with a multi-level, Voronoibased spatial partitioning of each dataset image. The proposed multi-level Voronoi-based encoding uses a spatial hierarchical K-means over interest-point locations, and computes a contentbased descriptor over each cell. In order to reduce the matching complexity with minimal or no sacrifice in retrieval performance: (i) we utilize the tree structure of the spatial hierarchical Kmeans to perform a top-to-bottom pruning for local similarity maxima; (ii) we propose a new image similarity score that combines relevant information from all partition levels into a single measure for similarity; (iii) we combine our proposal with a novel and efficient approach for optimal bit allocation within quantized descriptor representations. By deriving both a Voronoi-based VLAD descriptor (termed as Fast-VVLAD) and a Voronoi-based deep convolutional neural network (CNN) descriptor (termed as Fast-VDCNN), we demonstrate that our Voronoi-based framework is agnostic to the descriptor basis, and can easily be slotted into existing frameworks. Via a range of ROI queries in two standard datasets, it is shown that the Voronoibased descriptors achieve comparable or higher mean Average Precision against conventional grid-based spatial search, while offering more than two-fold reduction in complexity. Finally, beyond ROI queries, we show that Voronoi partitioning improves the geometric invariance of compact CNN descriptors, thereby resulting in competitive performance to the current state-of-theart on whole image retrieval

    Real-time near replica detection over massive streams of shared photos

    Get PDF
    Aquest treball es basa en la detecció en temps real de repliques d'imatges en entorns distribuïts a partir de la indexació de vectors de característiques locals
    corecore