3,394 research outputs found

    Robust Component-based Network Localization with Noisy Range Measurements

    Full text link
    Accurate and robust localization is crucial for wireless ad-hoc and sensor networks. Among the localization techniques, component-based methods advance themselves for conquering network sparseness and anchor sparseness. But component-based methods are sensitive to ranging noises, which may cause a huge accumulated error either in component realization or merging process. This paper presents three results for robust component-based localization under ranging noises. (1) For a rigid graph component, a novel method is proposed to evaluate the graph's possible number of flip ambiguities under noises. In particular, graph's \emph{MInimal sepaRators that are neaRly cOllineaR (MIRROR)} is presented as the cause of flip ambiguity, and the number of MIRRORs indicates the possible number of flip ambiguities under noise. (2) Then the sensitivity of a graph's local deforming regarding ranging noises is investigated by perturbation analysis. A novel Ranging Sensitivity Matrix (RSM) is proposed to estimate the node location perturbations due to ranging noises. (3) By evaluating component robustness via the flipping and the local deforming risks, a Robust Component Generation and Realization (RCGR) algorithm is developed, which generates components based on the robustness metrics. RCGR was evaluated by simulations, which showed much better noise resistance and locating accuracy improvements than state-of-the-art of component-based localization algorithms.Comment: 9 pages, 15 figures, ICCCN 2018, Hangzhou, Chin

    Distributed on-line multidimensional scaling for self-localization in wireless sensor networks

    Full text link
    The present work considers the localization problem in wireless sensor networks formed by fixed nodes. Each node seeks to estimate its own position based on noisy measurements of the relative distance to other nodes. In a centralized batch mode, positions can be retrieved (up to a rigid transformation) by applying Principal Component Analysis (PCA) on a so-called similarity matrix built from the relative distances. In this paper, we propose a distributed on-line algorithm allowing each node to estimate its own position based on limited exchange of information in the network. Our framework encompasses the case of sporadic measurements and random link failures. We prove the consistency of our algorithm in the case of fixed sensors. Finally, we provide numerical and experimental results from both simulated and real data. Simulations issued to real data are conducted on a wireless sensor network testbed.Comment: 32 pages, 5 figures, 1 tabl

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Distributed Service Discovery for Heterogeneous Wireless Sensor Networks

    Get PDF
    Service discovery in heterogeneous Wireless Sensor Networks is a challenging research objective, due to the inherent limitations of sensor nodes and their extensive and dense deployment. The protocols proposed for ad hoc networks are too heavy for sensor environments. This paper presents a resourceaware solution for the service discovery problem, which exploits the heterogeneous nature of the sensor network and alleviates the high-density problem from the flood-based approaches. The idea is to organize nodes into clusters, based on the available resources and the dynamics of nodes. The clusterhead nodes act as a distributed directory of service registrations. Service discovery messages are exchanged among the nodes in the distributed directory. The simulation results show the performance of the service discovery protocol in heterogeneous dense environments
    • 

    corecore