9,165 research outputs found

    Characteristic Regularisation for Super-Resolving Face Images

    Get PDF
    Existing facial image super-resolution (SR) methods focus mostly on improving "artificially down-sampled" lowresolution (LR) imagery. Such SR models, although strong at handling artificial LR images, often suffer from significant performance drop on genuine LR test data. Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data as well as cycle consistency loss formulation. However, this renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution. Importantly, this makes the end-to-end model training ineffective due to the difficulty of back-propagating gradients through two concatenated CNNs. To solve this problem, we formulate a method that joins the advantages of conventional SR and UDA models. Specifically, we separate and control the optimisations for characteristics consistifying and image super-resolving by introducing Characteristic Regularisation (CR) between them. This task split makes the model training more effective and computationally tractable. Extensive evaluations demonstrate the performance superiority of our method over state-of-the-art SR and UDA models on both genuine and artificial LR facial imagery data

    JSI-GAN: GAN-Based Joint Super-Resolution and Inverse Tone-Mapping with Pixel-Wise Task-Specific Filters for UHD HDR Video

    Full text link
    Joint learning of super-resolution (SR) and inverse tone-mapping (ITM) has been explored recently, to convert legacy low resolution (LR) standard dynamic range (SDR) videos to high resolution (HR) high dynamic range (HDR) videos for the growing need of UHD HDR TV/broadcasting applications. However, previous CNN-based methods directly reconstruct the HR HDR frames from LR SDR frames, and are only trained with a simple L2 loss. In this paper, we take a divide-and-conquer approach in designing a novel GAN-based joint SR-ITM network, called JSI-GAN, which is composed of three task-specific subnets: an image reconstruction subnet, a detail restoration (DR) subnet and a local contrast enhancement (LCE) subnet. We delicately design these subnets so that they are appropriately trained for the intended purpose, learning a pair of pixel-wise 1D separable filters via the DR subnet for detail restoration and a pixel-wise 2D local filter by the LCE subnet for contrast enhancement. Moreover, to train the JSI-GAN effectively, we propose a novel detail GAN loss alongside the conventional GAN loss, which helps enhancing both local details and contrasts to reconstruct high quality HR HDR results. When all subnets are jointly trained well, the predicted HR HDR results of higher quality are obtained with at least 0.41 dB gain in PSNR over those generated by the previous methods.Comment: The first two authors contributed equally to this work. Accepted at AAAI 2020. (Camera-ready version
    • …
    corecore