5,566 research outputs found

    In my Wish List, an Automated Tool for Fail-Secure Design Analysis: an Alloy-Based Feasibility Draft

    Full text link
    A system is said to be fail-secure, sometimes confused with fail-safe, if it maintains its security requirements even in the event of some faults. Fail-secure analyses are required by some validation schemes, such as some Common Criteria or NATO certifications. However, it is an aspect of security which as been overlooked by the community. This paper attempts to shed some light on the fail-secure field of study by: giving a definition of fail-secure as used in those certification schemes, and emphasizing the differences with fail-safe; and exhibiting a first feasibility draft of a fail-secure design analysis tool based on the Alloy model checker.Comment: In Proceedings ESSS 2014, arXiv:1405.055

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Restart-Based Fault-Tolerance: System Design and Schedulability Analysis

    Full text link
    Embedded systems in safety-critical environments are continuously required to deliver more performance and functionality, while expected to provide verified safety guarantees. Nonetheless, platform-wide software verification (required for safety) is often expensive. Therefore, design methods that enable utilization of components such as real-time operating systems (RTOS), without requiring their correctness to guarantee safety, is necessary. In this paper, we propose a design approach to deploy safe-by-design embedded systems. To attain this goal, we rely on a small core of verified software to handle faults in applications and RTOS and recover from them while ensuring that timing constraints of safety-critical tasks are always satisfied. Faults are detected by monitoring the application timing and fault-recovery is achieved via full platform restart and software reload, enabled by the short restart time of embedded systems. Schedulability analysis is used to ensure that the timing constraints of critical plant control tasks are always satisfied in spite of faults and consequent restarts. We derive schedulability results for four restart-tolerant task models. We use a simulator to evaluate and compare the performance of the considered scheduling models
    • …
    corecore