501 research outputs found

    Resource Buying Games

    Full text link
    In resource buying games a set of players jointly buys a subset of a finite resource set E (e.g., machines, edges, or nodes in a digraph). The cost of a resource e depends on the number (or load) of players using e, and has to be paid completely by the players before it becomes available. Each player i needs at least one set of a predefined family S_i in 2^E to be available. Thus, resource buying games can be seen as a variant of congestion games in which the load-dependent costs of the resources can be shared arbitrarily among the players. A strategy of player i in resource buying games is a tuple consisting of one of i's desired configurations S_i together with a payment vector p_i in R^E_+ indicating how much i is willing to contribute towards the purchase of the chosen resources. In this paper, we study the existence and computational complexity of pure Nash equilibria (PNE, for short) of resource buying games. In contrast to classical congestion games for which equilibria are guaranteed to exist, the existence of equilibria in resource buying games strongly depends on the underlying structure of the S_i's and the behavior of the cost functions. We show that for marginally non-increasing cost functions, matroids are exactly the right structure to consider, and that resource buying games with marginally non-decreasing cost functions always admit a PNE

    Robust randomized matchings

    Full text link
    The following game is played on a weighted graph: Alice selects a matching MM and Bob selects a number kk. Alice's payoff is the ratio of the weight of the kk heaviest edges of MM to the maximum weight of a matching of size at most kk. If MM guarantees a payoff of at least α\alpha then it is called α\alpha-robust. In 2002, Hassin and Rubinstein gave an algorithm that returns a 1/21/\sqrt{2}-robust matching, which is best possible. We show that Alice can improve her payoff to 1/ln(4)1/\ln(4) by playing a randomized strategy. This result extends to a very general class of independence systems that includes matroid intersection, b-matchings, and strong 2-exchange systems. It also implies an improved approximation factor for a stochastic optimization variant known as the maximum priority matching problem and translates to an asymptotic robustness guarantee for deterministic matchings, in which Bob can only select numbers larger than a given constant. Moreover, we give a new LP-based proof of Hassin and Rubinstein's bound
    corecore