2,053 research outputs found

    Complexity of Proper Prefix-Convex Regular Languages

    Get PDF
    The final publication is available at Springer via http:/dx.doi.org/10.1007/978-3-319-60134-2_5A language L over an alphabet Σ is prefix-convex if, for any words x,y,z∈Σ∗, whenever x and xyz are in L, then so is xy. Prefix-convex languages include right-ideal, prefix-closed, and prefix-free languages, which were studied elsewhere. Here we concentrate on prefix-convex languages that do not belong to any one of these classes; we call such languages proper. We exhibit most complex proper prefix-convex languages, which meet the bounds for the size of the syntactic semigroup, reversal, complexity of atoms, star, product, and Boolean operations.Natural Sciences and Engineering Research Council of Canada [grant no. OGP0000871

    Decision Problems For Convex Languages

    Full text link
    In this paper we examine decision problems associated with various classes of convex languages, studied by Ang and Brzozowski (under the name "continuous languages"). We show that we can decide whether a given language L is prefix-, suffix-, factor-, or subword-convex in polynomial time if L is represented by a DFA, but that the problem is PSPACE-hard if L is represented by an NFA. In the case that a regular language is not convex, we prove tight upper bounds on the length of the shortest words demonstrating this fact, in terms of the number of states of an accepting DFA. Similar results are proved for some subclasses of convex languages: the prefix-, suffix-, factor-, and subword-closed languages, and the prefix-, suffix-, factor-, and subword-free languages.Comment: preliminary version. This version corrected one typo in Section 2.1.1, line

    Regular Languages meet Prefix Sorting

    Full text link
    Indexing strings via prefix (or suffix) sorting is, arguably, one of the most successful algorithmic techniques developed in the last decades. Can indexing be extended to languages? The main contribution of this paper is to initiate the study of the sub-class of regular languages accepted by an automaton whose states can be prefix-sorted. Starting from the recent notion of Wheeler graph [Gagie et al., TCS 2017]-which extends naturally the concept of prefix sorting to labeled graphs-we investigate the properties of Wheeler languages, that is, regular languages admitting an accepting Wheeler finite automaton. Interestingly, we characterize this family as the natural extension of regular languages endowed with the co-lexicographic ordering: when sorted, the strings belonging to a Wheeler language are partitioned into a finite number of co-lexicographic intervals, each formed by elements from a single Myhill-Nerode equivalence class. Moreover: (i) We show that every Wheeler NFA (WNFA) with nn states admits an equivalent Wheeler DFA (WDFA) with at most 2n1Σ2n-1-|\Sigma| states that can be computed in O(n3)O(n^3) time. This is in sharp contrast with general NFAs. (ii) We describe a quadratic algorithm to prefix-sort a proper superset of the WDFAs, a O(nlogn)O(n\log n)-time online algorithm to sort acyclic WDFAs, and an optimal linear-time offline algorithm to sort general WDFAs. By contribution (i), our algorithms can also be used to index any WNFA at the moderate price of doubling the automaton's size. (iii) We provide a minimization theorem that characterizes the smallest WDFA recognizing the same language of any input WDFA. The corresponding constructive algorithm runs in optimal linear time in the acyclic case, and in O(nlogn)O(n\log n) time in the general case. (iv) We show how to compute the smallest WDFA equivalent to any acyclic DFA in nearly-optimal time.Comment: added minimization theorems; uploaded submitted version; New version with new results (W-MH theorem, linear determinization), added author: Giovanna D'Agostin

    Mean-payoff Automaton Expressions

    Get PDF
    Quantitative languages are an extension of boolean languages that assign to each word a real number. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. When the mode of branching of the automaton is deterministic, nondeterministic, or alternating, the corresponding class of quantitative languages is not robust as it is not closed under the pointwise operations of max, min, sum, and numerical complement. Nondeterministic and alternating mean-payoff automata are not decidable either, as the quantitative generalization of the problems of universality and language inclusion is undecidable. We introduce a new class of quantitative languages, defined by mean-payoff automaton expressions, which is robust and decidable: it is closed under the four pointwise operations, and we show that all decision problems are decidable for this class. Mean-payoff automaton expressions subsume deterministic mean-payoff automata, and we show that they have expressive power incomparable to nondeterministic and alternating mean-payoff automata. We also present for the first time an algorithm to compute distance between two quantitative languages, and in our case the quantitative languages are given as mean-payoff automaton expressions

    Languages convex with respect to binary relations, and their closure properties

    Get PDF
    A language is prefix-convex if it satisfies the condition that, if a word w and its prefix u are in the language, then so is every prefix of w that has u as a prefix. Prefix-convex languages include prefix-closed languages at one end of the spectrum, and prefix-free languages, which include prefix codes, at the other. In a similar way, we define suffix-, bifix-, factor-, and subword-convex languages and their closed and free counterparts. This provides a common framework for diverse languages such as codes, factorial languages and ideals. We examine the relationships among these languages. We generalize these notions to arbitrary binary relations on the set of all words over a given alphabet, and study the closure properties of such languages
    corecore