
Complexity of Proper Prefix-Convex Regular

Languages⋆

Janusz A. Brzozowski and Corwin Sinnamon

David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada N2L 3G1

brzozo@uwaterloo.ca, sinncore@gmail.com

Abstract. A language L over an alphabet Σ is prefix-convex if, for
any words x, y, z ∈ Σ∗, whenever x and xyz are in L, then so is xy.
Prefix-convex languages include right-ideal, prefix-closed, and prefix-free
languages, which were studied elsewhere. Here we concentrate on prefix-
convex languages that do not belong to any one of these classes; we call
such languages proper. We exhibit most complex proper prefix-convex
languages, which meet the bounds for the size of the syntactic semigroup,
reversal, complexity of atoms, star, product, and boolean operations.
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1 Introduction

Prefix-Convex Languages We examine the complexity properties of a class of
regular languages that has never been studied before: the class of proper prefix-
convex languages [7]. Let Σ be a finite alphabet; if w = xy, for x, y ∈ Σ∗, then
x is a prefix of w. A language L ⊆ Σ∗ is prefix-convex [1, 16] if whenever x and
xyz are in L, then so is xy. Prefix-convex languages include three special cases:

1. A language L ⊆ Σ is a right ideal if it is non-empty and satisfies L = LΣ∗.
Right ideals appear in pattern matching [11]: LΣ∗ is the set of all words in
some text (word in Σ∗) beginning with words in L.

2. A language is prefix-closed [6] if whenever w is in L, then so is every prefix
of w. The set of allowed sequences to any system is prefix-closed. Every
prefix-closed language other than Σ∗ is the complement of a right ideal [1].

3. A language is prefix-free if w ∈ L implies that no prefix of w other than w
is in L. Prefix-free languages other than {ε}, where ε is the empty word, are
prefix codes and are of considerable importance in coding theory [2].

The complexities of these three special prefix-convex languages were studied
in [8]. We now turn to the “real” prefix-convex languages that do not belong to
any of the three special classes.

Omitted proofs can be found in [7].
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Complexities of Operations If L ⊆ Σ∗ is a language, the (left) quotient of L
by a word w ∈ Σ∗ is w−1L = {x | wx ∈ L}. A language is regular if and only if
it has a finite number of distinct quotients. So the number of quotients of L, the
quotient complexity [3] κ(L) of L, is a natural measure of complexity for L. An
equivalent concept is the state complexity [15, 17, 18] of L, which is the number
of states in a complete minimal deterministic finite automaton (DFA) over Σ
recognizing L. We refer to quotient/state complexity simply as complexity.

If Ln is a regular language of complexity n, and ◦ is a unary operation, the
complexity of ◦ is the maximal value of κ(L◦

n), expressed as a function of n, as Ln

ranges over all languages of complexity n. If L′
m and Ln are regular languages of

complexities m and n respectively, and ◦ is a binary operation, the complexity of
◦ is the maximal value of κ(L′

m ◦Ln), expressed as a function of m and n, as L′
m

and Ln range over all languages of complexities m and n. The complexity of an
operation is a lower bound on its time and space complexities. The operations
reversal, (Kleene) star, product (concatenation), and binary boolean operations
are considered “common”, and their complexities are known; see [4, 17, 18].

Witnesses To find the complexity of a unary operation we find an upper bound
on this complexity, and languages that meet this bound. We require a language
Ln for each n, that is, a sequence, (Lk, Lk+1, . . . ), called a stream of languages,
where k is a small integer, because the bound may not hold for small values of n.
For a binary operation we need two streams. The same stream cannot always be
used for both operands, but for all common binary operations the second stream
can be a “dialect” of the first, that is it can “differ only slightly” from the first [4].
Let Σ = {a1, . . . , ak} be an alphabet ordered as shown; if L ⊆ Σ∗, we denote it
by L(a1, . . . , ak). A dialect of L is obtained by deleting letters of Σ in the words
of L, or replacing them by letters of another alphabet Σ′. More precisely, for an
injective partial map π : Σ 7→ Σ′, we get a dialect of L by replacing each letter
a ∈ Σ by π(a) in every word of L, or deleting the word if π(a) is undefined. We
write L(π(a1), . . . , π(ak)) to denote the dialect of L(a1, . . . , ak) given by π, and
we denote undefined values of π by “−”. Undefined values for letters at the end
of the alphabet are omitted; for example, L(a, c,−,−) is written as L(a, c). Our
definition of dialect is more general than that of [5], where only the case Σ′ = Σ
was allowed.

Finite Automata A deterministic finite automaton (DFA) is a quintuple D =
(Q,Σ, δ, q0, F ), where Q is a finite non-empty set of states, Σ is a finite non-
empty alphabet, δ : Q × Σ → Q is the transition function, q0 ∈ Q is the initial
state, and F ⊆ Q is the set of final states. We extend δ to a function δ : Q×Σ∗ →
Q as usual. A DFA D accepts a word w ∈ Σ∗ if δ(q0, w) ∈ F . The set of all words
accepted by D is the language of D. If q ∈ Q, then the language Lq of q is the
language accepted by the DFA (Q,Σ, δ, q, F ). A state is empty or dead or a sink
if its language is empty. Two states p and q of D are equivalent if Lp = Lq.
A state q is reachable if there exists w ∈ Σ∗ such that δ(q0, w) = q. A DFA
is minimal if all of its states are reachable and no two states are equivalent.
A nondeterministic finite automaton (NFA) is a quintuple D = (Q,Σ, δ, I, F ),
where Q, Σ and F are defined as in a DFA, δ : Q × Σ → 2Q is the transition
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function, and I ⊆ Q is the set of initial states. An ε-NFA is an NFA in which
transitions under the empty word ε are also permitted.

Transformations We use Qn = {0, . . . , n− 1} as the set of states of every DFA
with n states. A transformation of Qn is a mapping t : Qn → Qn. The image of
q ∈ Qn under t is qt. In any DFA, each letter a ∈ Σ induces a transformation
δa of the set Qn defined by qδa = δ(q, a); we denote this by a : δa. Often we use
the letter a to denote the transformation it induces; thus we write qa instead of
qδa. We extend the notation to sets: if P ⊆ Qn, then Pa = {pa | p ∈ P}. We

also write P
a

−→ Pa to indicate that the image of P under a is Pa. If s, t are
transformations of Qn, their composition is (qs)t.

For k > 2, a transformation (permutation) t of a set P = {q0, q1, . . . , qk−1} ⊆
Qn is a k-cycle if q0t = q1, q1t = q2, . . . , qk−2t = qk−1, qk−1t = q0. This k-cycle
is denoted by (q0, q1, . . . , qk−1). A 2-cycle (q0, q1) is called a transposition. A
transformation that sends all the states of P to q and acts as the identity on
the other states is denoted by (P → q), and (Qn → p) is called a constant
transformation. If P = {p} we write (p → q) for ({p} → q). The identity
transformation is denoted by 1. Also, (ji q → q + 1) is a transformation that
sends q to q + 1 for i 6 q 6 j and is the identity for the remaining states;
(ji q → q − 1) is defined similarly.

Semigroups The syntactic congruence of L ⊆ Σ∗ is defined on Σ+: For x, y ∈
Σ+, x≈L y if and only if wxz ∈ L ⇔ wyz ∈ L for all w, z ∈ Σ∗. The quotient
set Σ+/≈L of equivalence classes of ≈L is the syntactic semigroup of L. Let
Dn = (Qn, Σ, δ, q0, F ) be a DFA, and let Ln = L(Dn). For each word w ∈ Σ∗,
the transition function induces a transformation δw of Qn by w: for all q ∈ Qn,
qδw = δ(q, w). The set TDn

of all such transformations by non-empty words is
a semigroup under composition called the transition semigroup of Dn. If Dn is
a minimal DFA of Ln, then TDn

is isomorphic to the syntactic semigroup TLn

of Ln, and we represent elements of TLn
by transformations in TDn

. The size of
the syntactic semigroup has been used as a measure of complexity for regular
languages [4, 10, 12, 14].

Atoms are defined by a left congruence, where two words x and y are equivalent
if ux ∈ L if and only if uy ∈ L for all u ∈ Σ∗. Thus x and y are equivalent if
x ∈ u−1L if and only if y ∈ u−1L. An equivalence class of this relation is an
atom of L [9, 13].

One can conclude that an atom is a non-empty intersection of complemented
and uncomplemented quotients of L. That is, every atom of a language with
quotients K0,K1, . . . ,Kn−1 can be written as AS =

⋂

i∈S Ki∩
⋂

i∈S Ki for some
set S ⊆ Qn. The number of atoms and their complexities were suggested as
possible measures of complexity [4], because all the quotients of a language and
the quotients of its atoms are unions of atoms [9].

Most Complex Regular Stream The stream (Dn(a, b, c) | n > 3) of Defini-
tion 1 and Figure 1 will be used as a component in the class of proper prefix-
convex languages. This stream together with some dialects meets the complexity
bounds for reversal, star, product, and all binary boolean operations [7, 8]. More-
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over, it has the maximal syntactic semigroup and most complex atoms, making
it a most complex regular stream.

Definition 1. For n > 3, let Dn = Dn(a, b, c) = (Qn, Σ, δn, 0, {n− 1}), where
Σ = {a, b, c}, and δn is defined by a : (0, . . . , n− 1), b : (0, 1), c : (1 → 0).

0 1 2 . . . n− 2 n− 1

c

a, b

b, c
a

b, c

a a

b, c

a

a

b, c

Fig. 1. Minimal DFA of a most complex regular language.

Most complex streams are useful in systems dealing with regular languages
and finite automata. To know the maximal sizes of automata that can be handled
by a system it suffices to use the most complex stream to test all the operations.

2 Proper Prefix-Convex Languages

We begin with some properties of prefix-convex languages that will be used
frequently in this section. The following lemma and propositions characterize
the classes of prefix-convex languages in terms of their minimal DFAs.

Lemma 1. Let L be a prefix-convex language over Σ. Either L is a right ideal
or L has an empty quotient.

Proposition 1. Let Ln be a regular language of complexity n, and let Dn =
(Qn, Σ, δ, 0, F ) be a minimal DFA recognizing Ln. The following are equivalent:

1. Ln is prefix-convex.
2. For all p, q, r ∈ Qn, if p and r are final, q is reachable from p, and r is

reachable from q, then q is final.
3. Every state reachable in Dn from any final state is either final or empty.

Proposition 2. Let Ln be a non-empty prefix-convex language of complexity n,
and let Dn = (Qn, Σ, δ, 0, F ) be a minimal DFA recognizing Ln.

1. Ln is prefix-closed if and only if 0 ∈ F .
2. Ln is prefix-free if and only if Dn has a unique final state p and an empty

state p′ such that δ(p, a) = p′ for all a ∈ Σ.
3. Ln is a right ideal if and only if Dn has a unique final state p and δ(p, a) = p

for all a ∈ Σ.
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A prefix-convex language L is proper if it is not a right ideal and it is neither
prefix-closed nor prefix-free. We say it is k-proper if it has k final states, 1 6

k 6 n − 2. Every minimal DFA for a k-proper language with complexity n has
the same general structure: there are n − 1 − k non-final, non-empty states, k
final states, and one empty state. Every letter fixes the empty state and, by
Proposition 1, no letter sends a final state to a non-final, non-empty state.

Next we define a stream of k-proper DFAs and languages, which we will show
to be most complex.

Definition 2. For n > 3, 1 6 k 6 n − 2, let Dn,k(Σ) = (Qn, Σ, δn,k, 0, Fn,k)
where Σ = {a, b, c1, c2, d1, d2, e}, Fn,k = {n− 1− k, . . . , n− 2}, and δn,k is given
by the transformations

a :



















(1, . . . , n− 2− k)(n− 1− k, n− k), if n− 1− k is even and k > 2;

(0, . . . , n− 2− k)(n− 1− k, n− k), if n− 1− k is odd and k > 2;

(1, . . . , n− 2− k), if n− 1− k is even and k = 1;

(0, . . . , n− 2− k), if n− 1− k is odd and k = 1.

b :



















(n− k, . . . , n− 2)(0, 1), if k is even and n− 1− k > 2;

(n− 1− k, . . . , n− 2)(0, 1), if k is odd and n− 1− k > 2;

(n− k, . . . , n− 2), if k is even and n− 1− k = 1;

(n− 1− k, . . . , n− 2), if k is odd and n− 1− k = 1.

c1 :

{

(1 → 0), if n− 1− k > 2;

1, if n− 1− k = 1.

c2 :

{

(n− k → n− 1− k), if k > 2;

1, if k = 1.

d1 : (n− 2− k → n− 1)(n−3−k
0 q → q + 1).

d2 : (
n−2
n−1−k q → q + 1).

e : (0 → n− 1− k).

Also, let En,k = {0, . . . , n− 2 − k}; it is useful to partition Qn into En,k, Fn,k,
and {n− 1}. Letters a and b have complementary behaviours on En,k and Fn,k,
depending on the parities of n and k. Letters c1 and d1 act on En,k in exactly the
same way as c2 and d2 act on Fn,k. In addition, d1 and d2 send states n− 2− k
and n− 2, respectively, to state n− 1, and letter e connects the two parts of the
DFA. The structure of Dn(Σ) is shown in Figures 2 and 3 for certain parities
of n− 1− k and k. Let Ln,k(Σ) be the language recognized by Dn,k(Σ).

Theorem 1 (Proper Prefix-Convex Languages). For n > 3 and 1 6 k 6

n − 2, the DFA Dn,k(Σ) of Definition 2 is minimal and Ln,k(Σ) is a k-proper
language of complexity n. The bounds below are maximal for k-proper prefix-
convex languages. At least seven letters are required to meet these bounds.
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0 1 2 . . . n − 2 − k

n − 1

n − 1 − k n − k n − k + 1 . . . n − 2

a, b, d1
d1

e

b, c1

a

a, d1 a, d1 a, d1

a, d2

a, c2

b, d2 b, d2 b, d2 d2

b

Fig. 2. DFA Dn,k(a, b, c1, c2, d1, d2, e) of Definition 2 when n− 1− k is odd, k is even,
and both are at least 2; missing transitions are self-loops.

0 1 2 . . . n − 2 − k

n − 1

n − 1 − k n − k n − k + 1 . . . n − 2

b, d1
d1

e

b, c1

a

a, d1 a, d1 a, d1

a, b, d2

a, c2

b, d2 b, d2 b, d2 d2

b

Fig. 3. DFA Dn,k(a, b, c1, c2, d1, d2, e) of Definition 2 when n− 1− k is even, k is odd,
and both are at least 2; missing transitions are self-loops.

1. The syntactic semigroup of Ln,k(Σ) has cardinality nn−1−k(k+1)k; the max-
imal value n(n− 1)n−2 is reached only when k = n− 2.

2. The non-empty, non-final quotients of Ln,k(a, b,−,−,−, d2, e) have complex-
ity n, the final quotients have complexity k + 1, and ∅ has complexity 1.

3. The reverse of Ln,k(a, b,−,−,−, d2, e) has complexity 2n−1; moreover, the
language Ln,k(a, b,−,−,−, d2, e) has 2n−1 atoms for all k.

4. For each atom AS of Ln,k(Σ), write S = X1 ∪ X2, where X1 ⊆ En,k and

X2 ⊆ Fn,k. Let X1 = En,k \X1 and X2 = Fn,k \X2. If X2 6= ∅, then κ(AS) =

1 +

|X1|
∑

x1=0

|X1|+|X2|−x1
∑

x2=1

|X1|
∑

y1=0

|X1|+|X2|−y1
∑

y2=0

(n − 1 − k

x1

)( k

x2

)(n − 1 − k − x1

y1

)(k − x2

y2

)

.

If X1 6= ∅ and X2 = ∅, then κ(AS) =

1 +

|X1|
∑

x1=0

|X1|−x1
∑

x2=0

|X1|
∑

y1=0

k
∑

y2=0

(n − 1 − k

x1

)( k

x2

)(n − 1 − k − x1

y1

)(k − x2

y2

)

− 2k
|X1|
∑

y=0

(n − 1 − k

y

)

.

Otherwise, S = ∅ and κ(AS) = 2n−1.
5. The star of Ln,k(a, b,−,−, d1, d2, e) has complexity 2n−2 + 2n−2−k + 1. The

maximal value 2n−2 + 2n−3 + 1 is reached only when k = 1.
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6. L′
m,j(a, b, c1,−, d1, d2, e)Ln,k(a, d2, c1,−, d1, b, e) has complexity m− 1− j +

j2n−2+2n−1. The maximal value m2n−2+1 is reached only when j = m−2.
7. For m,n > 3, 1 6 j 6 m − 2, and 1 6 k 6 n − 2, define the languages

L′
m,j = L′

m,j(a, b, c1,−, d1, d2, e) and Ln,k = Ln,k(a, b, e,−, d2, d1, c1). For
any proper binary boolean function ◦, the complexity of L′

m,j ◦Ln,k is maxi-
mal. In particular,
(a) L′

m,j ∪ Ln,k and L′
m,j ⊕ Ln,k have complexity mn.

(b) L′
m,j \ Ln,k has complexity mn− (n− 1).

(c) L′
m,j ∩ Ln,k has complexity mn− (m+ n− 2).

Proof. The remainder of this paper is an outline of the proof of this theorem.
The longer parts of the proof are separated into individual propositions and
lemmas.

DFA Dn,k(a, b,−,−,−, d2, e) is easily seen to be minimal. Language Ln,k(Σ)
is k-proper by Propositions 1 and 2.

1. See Lemma 2 and Proposition 3.
2. If the initial state of Dn,k(a, b,−,−,−, d2, e) is changed to q ∈ En,k, the new

DFA accepts a quotient of Ln,k and is still minimal; hence the complexity
of that quotient is n. If the initial state is changed to q ∈ Fn,k then states
in En,k are unreachable, but the DFA on {n− 1− k, . . . , n− 1} is minimal;
hence the complexity of that quotient is k + 1. The remaining quotient is
empty, and hence has complexity 1. By Proposition 1, these are maximal.

3. See Proposition 4 for the reverse. It was shown in [9] that the number of
atoms is equal to the complexity of the reverse.

4. See [7].
5. See Proposition 5.
6. See [7].
7. By [3, Theorem 2], all boolean operations on regular languages have the

upper bound mn, which gives the bound for (a). The bounds for (b) and
(c) follow from [3, Theorem 5]. The proof that all these bounds are tight for
L′
m,j ◦ Ln,k can be found in [7]. ⊓⊔

Lemma 2. Let n > 1 and 1 6 k 6 n−2. For any permutation t of Qn such that
En,kt = En,k, Fn,kt = Fn,k, and (n − 1)t = n − 1, there is a word w ∈ {a, b}∗

that induces t on Dn,k.

Proof. Only a and b induce permutations of Qn; every other letter induces a
properly injective map. Furthermore, a and b permute En,k and Fn,k separately,
and both fix n − 1. Hence every w ∈ {a, b}∗ induces a permutation on Qn

such that En,kw = En,k, Fn,kw = Fn,k, and (n − 1)w = n − 1. Each such
permutation naturally corresponds to an element of Sn−1−k × Sk, where Sm

denotes the symmetric group on m elements. To be consistent with the DFA,
assume Sn−1−k contains permutations of {0, . . . , n − 2 − k} and Sk contains
permutations of {n− 1− k, . . . , n− 2}. Let sa and sb denote the group elements
corresponding to the transformations induced by a and b respectively. We show
that sa and sb generate Sn−1−k × Sk.
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It is well known that (0, . . . ,m− 1), and (0, 1) generate the symmetric group
on {0, . . . ,m − 1} for any m ≥ 2. Note that (1, . . . ,m − 1) and (0, 1) are also
generators, since (0, 1)(1, . . . ,m− 1) = (0, . . . ,m− 1).

If n−1−k = 1 and k = 1, then Sn−1−k×Sk is the trivial group. If n−1−k = 1
and k > 2, then sa = (1, (n−1−k, n−k)) and sb is either (1, (n−1−k, . . . , n−2))
or (1, (n− k, . . . , n− 2)), and either pair generates the group. There is a similar
argument when k = 1.

Assume now n−1−k > 2 and k > 2. If n−1−k is odd then sa = ((0, . . . , n−
2 − k), (n − 1 − k, n − k)), and hence sn−1−k

a = ((0, . . . , n − 2 − k)n−1−k, (n −
1− k, n− k)n−1−k) = (1, (n− 1− k, n− k)). Similarly if n− 1− k is even then
sa = ((1, . . . , n−2−k), (n−1−k, n−k)), and hence sn−2−k

a = (1, (n−1−k, n−k)).
Therefore (1, (n−1−k, n−k)) is always generated by sa. By symmetry, ((0, 1),1)
is always generated by sb regardless of the parity of k.

Since we can isolate the transposition component of sa, we can isolate the
other component as well: (1, (n− 1− k, n− k))sa is either ((0, . . . , n− 2− k),1)
or ((1, . . . , n − 2 − k),1). Paired with ((0, 1),1), either element is sufficient to
generate Sn−1−k×{1}. Similarly, sa and sb generate {1}×Sk. Therefore sa and
sb generate Sn−1−k × Sk. It follows that a and b generate all permutations t of
Qn such that En,kt = En,k, Fn,kt = Fn,k, and (n− 1)t = n− 1. ⊓⊔

Proposition 3 (Syntactic Semigroup). The syntactic semigroup of Ln,k(Σ)
has cardinality nn−1−k(k + 1)k, which is maximal for a k-proper language. Fur-
thermore, seven letters are required to meet this bound. The maximum value
n(n− 1)n−2 is reached only when k = n− 2.

Proof. Let L be a k-proper language of complexity n and let D be a minimal
DFA recognizing L. By Lemma 1, D has an empty state. By Proposition 1, the
only states that can be reached from one of the k final states are either final
or empty. Thus, a transformation in the transition semigroup of D may map
each final state to one of k + 1 possible states, while each non-final, non-empty
state may be mapped to any of the n states. Since the empty state can only
be mapped to itself, we are left with nn−1−k(k + 1)k possible transformations
in the transition semigroup. Therefore the syntactic semigroup of any k-proper
language has size at most nn−1−k(k + 1)k.

Now consider the transition semigroup of Dn,k(Σ). Every transformation t
in the semigroup must satisfy Fn,kt ⊆ Fn,k ∪ {n− 1} and (n− 1)t = n− 1, since
any other transformation would violate prefix-convexity. We show that the semi-
group contains every such transformation, and hence the syntactic semigroup of
Ln,k(Σ) is maximal.

First, consider the transformations t such that En,kt ⊆ En,k ∪ {n − 1} and
qt = q for all q ∈ Fn,k∪{n−1}. By Lemma 2, a and b generate every permutation
of En,k. When t is not a permutation, we can use c1 to combine any states p
and q: apply a permutation on En,k so that p → 0 and q → 1, and then apply
c1 so that 1 → 0. Repeat this method to combine any set of states, and further
apply permutations to induce the desired transformation while leaving the states
of Fn,k ∪ {n − 1} in place. The same idea applies with d1; apply permutations
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and d1 to send any states of En,k to n − 1. Hence a, b, c1, and d1 generate
every transformation t such that En,kt ⊆ En,k ∪ {n − 1} and qt = q for all
q ∈ Fn,k ∪ {n− 1}.

We can make the same argument for transformations that act only on Fn,k

and fix every other state. Since c2 and d2 act on Fn,k exactly as c1 and d1 act
on En,k, the letters a, b, c2, and d2 generate every transformation t such that
Fn,kt ⊆ Fn,k∪{n−1} and qt = q for all q ∈ En,k∪{n−1}. It follows that a, b, c1,
c2, d1, and d2 generate every transformation t such that En,kt ⊆ En,k ∪{n− 1},
Fn,kt ⊆ Fn,k ∪ {n− 1}, and (n− 1)t = n− 1.

Note the similarity between this DFA restricted to the states En,k ∪ {n− 1}
(or Fn,k∪{n−1}) and the witness for right ideals introduced in [7]. The argument
for the size of the syntactic semigroup of right ideals is similar to this; see [10].

Finally, consider an arbitrary transformation t such that Fn,kt ⊆ Fn,k∪{n−1}
and (n−1)t = n−1. Let jt be the number of states p ∈ En,k such that pt ∈ Fn,k.
We show by induction on jt that t is in the transition semigroup of D. If jt = 0,
then t is generated by Σ \ {e}. If jt > 1, there exist p, q ∈ En,k such that
pt ∈ Fn,k and q is not in the image of t. Consider the transformations s1 and
s2 defined by qs1 = pt and rs1 = r for r 6= q, and ps2 = q and rs2 = rt
for r 6= p. Then (rs2)s1 = rt for all r ∈ Qn. Notice that js2 = jt − 1, and
hence Σ generates s2 by inductive assumption. One can verify that s1 = (n −
1 − k, pt)(0, q)(0 → n− 1 − k)(0, q)(n − 1 − k, pt). From this expression, we see
that s1 is the composition of transpositions induced by words in {a, b}∗ and the
transformation (0 → n − 1 − k) induced by e, and hence s1 is generated by Σ.
Thus, t is in the transition semigroup. By induction on jt, it follows that the
syntactic semigroup of Ln,k is maximal.

Now we show that seven letters are required to meet this bound. Two letters
(like a and b) are required to generate the permutations, since clearly one letter
is not sufficient. Every other letter will induce a properly injective map. A letter
(like c1) that induces a properly injective map on En,k and permutes Fn,k is
required. Similarly, a letter (like c2) that permutes En,k and induces a properly
injective map on Fn,k is required. A letter (like d1) that sends a state in En,k

to n − 1 and permutes Fn,k is required. Similarly, a letter (like d2) that sends
a state in Fn,k to n− 1 and permutes En,k is required. Finally, a letter (like e)
that connects En,k and Fn,k is required.

For a fixed n, we may want to know which k ∈ {1, . . . , n − 2} maximizes
sn(k) = nn−1−k(k+1)k; this corresponds to the largest syntactic semigroup of a
proper prefix-convex language with n quotients. We show that sn(k) is largest at

k = n− 2. Consider the ratio sn(k+1)
sn(k)

= (k+2)k+1

n(k+1)k
. Notice this ratio is increasing

with k, and hence sn is a convex function on {1, . . . , n− 2}. It follows that the
maximum value of sn must occur at one the endpoints, 1 and n− 2.

Now we show that sn(n−2) > sn(1) for all n > 3. We can check this explicitly

for n = 3, 4, 5. When n > 6, sn(n− 2)/sn(1) =
n
2

(

n−1
n

)n−2
> 3 (1/e) > 1; so the

largest syntactic semigroup of Ln,k(Σ) occurs only at k = n−2 for all n > 3. ⊓⊔
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Proposition 4 (Reverse). For any regular language L of complexity n with an
empty quotient, the reversal has complexity at most 2n−1. Moreover, the reverse
of Ln,k(a, b,−,−,−, d2, e) has complexity 2n−1 for n > 3 and 1 6 k 6 n− 2.

Proof. The first claim is left for the reader to verify. For the second claim, let
Dn,k = (Qn, {a, b, d2, e}, δn,k, 0, Fn,k) denote the DFA Dn,k(a, b,−,−,−, d2, e) in
Definition 2 and let Ln,k = L(Dn,k). Construct an NFA N recognizing the reverse
of Ln,k by reversing each transition, letting the initial state 0 be the unique final
state, and letting the final states in Fn,k be the initial states. Applying the subset
construction to N yields a DFA DR whose states are subsets of Qn−1, with initial
state Fn,k and final states {U ⊆ Qn−1 | 0 ∈ U}. We show that DR is minimal,
and hence the reverse of Ln,k has complexity 2n−1.

Recall from Lemma 2 that a and b generate all permutations of En,k and Fn,k

in Dn,k and, although the transitions are reversed in DR, they still generate all
such permutations. Let u1, u2 ∈ {a, b}∗ be such that u1 induces (0, . . . , n−2−k)
and u2 induces (n− 1− k, . . . , n− 2) in DR.

Consider a state U = {q1, . . . , qh, n − 1 − k, . . . , n − 2} where 0 6 q1 <
q2 < · · · < qh 6 n − 2 − k. If h = 0, then U is the initial state. When h > 1,
{q2 − q1, q3 − q1, . . . , qh − q1, n − 1 − k, . . . , n − 2}euq1

1 = U . By induction, all
such states are reachable.

Now we show that any state U = {q1, . . . , qh, p1, . . . , pi} where 0 6 q1 < q2 <
· · · < qh 6 n− 2− k and n− 1− k 6 p1 < p2 < · · · < pi 6 n− 2 is reachable. If
i = k, then U = {q1, . . . , qh, n− 1 − k, . . . , n− 2} is reachable by the argument
above. When 0 6 i < k, choose p ∈ Fn,k \ U and see that U is reached from

U ∪ {p} by un−1−p
2 d2u

p−(n−2−k)
2 . By induction, every state is reachable.

To prove distinguishability, consider distinct states U and V . Choose q ∈
U⊕V . If q ∈ En,k, then U and V are distinguished by un−1−k−q

1 . When q ∈ Fn,k,

they are distinguished by un−1−q
2 e. So DR is minimal. ⊓⊔

Proposition 5 (Star). Let L be a regular language with n > 2 quotients, in-
cluding k > 1 final quotients and one empty quotient. Then κ(L∗) 6 2n−2 +
2n−2−k+1. This bound is tight for prefix-convex languages; in particular, the lan-
guage (Ln,k(a, b,−,−, d1, d2, e))

∗ meets this bound for n > 3 and 1 6 k 6 n− 2.

Proof. Since L has an empty quotient, let n−1 be the empty state of its minimal
DFA D. To obtain an ε-NFA for L∗, we add a new initial state 0′ which is final
and has the same transitions as 0. We then add an ε-transition from every
state in F to 0. Applying the subset construction to this ε-NFA yields a DFA
D′ = (Q′, Σ, δ′, {0′}, F ′) recognizing L∗, in which Q′ contains non-empty subsets
of Qn ∪ {0′}.

Many of the states of Q′ are unreachable or indistinguishable from other
states. Since there is no transition in the ε-NFA to 0′, the only reachable state in
Q′ containing 0′ is {0′}. As well, any reachable final state U 6= {0′} must contain
0 because of the ε-transitions. Finally, for any U ∈ Q′, we have U ∈ F ′ if and
only if U ∪ {n− 1} ∈ F ′, and since δ′(U ∪ {n− 1}, w) = δ′(U,w) ∪ {n− 1} for
all w ∈ Σ∗, the states U and U ∪ {n− 1} are equivalent in D′.
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Hence D′ is equivalent to a DFA with the states {{0′}}∪{U ⊆ Qn−1 | U∩F =
∅} ∪ {U ⊆ Qn−1 | 0 ∈ U and U ∩ F 6= ∅}. This DFA has 1 + 2n−1−k + (2n−2 −
2n−2−k) = 2n−2 + 2n−2−k + 1 states. Thus, κ(L∗) 6 2n−2 + 2n−2−k + 1.

This bound applies when L is a prefix-convex language and n > 3. By
Lemma 1, L is either a right ideal or has an empty state. If L is a right ideal,
then κ(L∗) 6 n+ 1, which is at most 2n−2 + 2n−2−k + 1 for n > 3.

For the last claim, let Dn,k(a, b,−,−, d1, d2, e) of Definition 2 be denoted by
Dn,k = (Qn, {a, b, d1, d2, e}, δn,k, 0, Fn,k) and let Ln,k = L(Dn,k). We apply the
same construction and reduction as before to obtain a DFA D′

n,k recognizing L∗
n,k

with states Q′ = {{0′}} ∪ {U ⊆ En,k} ∪ {U ⊆ Qn−1 | 0 ∈ U and U ∩ Fn,k 6= ∅}.
We show that the states of Q′ are reachable and pairwise distinguishable.

By Lemma 2, a and b generate all permutations of En,k and Fn,k in Dn,k.
Choose u1, u2 ∈ {a, b}∗ such that u1 induces (0, . . . , n − 2 − k) and u2 induces
(n− 1− k, . . . , n− 2) in Dn,k.

For reachability, we consider three cases. (1) State {0′} is reachable by ε.

(2) Let U ⊆ En,k. For any q ∈ En,k, we can reach U \ {q} by un−2−k−q
1 d1u

q
1;

hence if U is reachable, then every subset of U is reachable. Observe that state
En,k is reachable by eun−2−k

1 dk2 , and we can reach any subset of this state.
Therefore, all non-final states are reachable. (3) If U ∩ Fn,k 6= ∅, then U =
{0, q1, q2, . . . , qh, r1, . . . , ri} where 0 < q1 < · · · < qh 6 n− 2− k and n− 1− k 6

r1 < · · · < ri < n − 1 and i > 1. We prove that U is reachable by induction
on i. If i = 0, then U is reachable by (2). For any i > 1, we can reach U from

{0, q1, . . . , qh, r2− (r1− (n− 1−k)), . . . , ri− (r1− (n− 1−k))} by eu
r1−(n−1−k)
2 .

Therefore, all states of this form are reachable.
Now we show that the states are pairwise distinguishable. (1) The initial state

{0′} is distinguishable from any other final state U since {0′}u1 is non-final and
Uu1 is final. (2) If U and V are distinct subsets of En,k, then there is some

q ∈ U ⊕ V . We distinguish U and V by un−1−k−q
1 e. (3) If U and V are distinct

and final and neither one is {0′}, then there is some q ∈ U ⊕ V . If q ∈ En,k,
then Udk2 = U \ Fn,k and V dk2 = V \ Fn,k are distinct, non-final states as in (2).

Otherwise, q ∈ Fn,k and we distinguish U and V by un−1−q
2 dk−1

2 . ⊓⊔

3 Conclusions

The bounds for prefix-convex languages (see also [8]) are summarized in Table 1.
The largest bounds are shown in boldface type, and they are reached either in
the class of right-ideal languages or the class of proper languages. Recall that for
regular languages we have the following results: semigroup nn, reverse 2n, star
2n−1 + 2n−2, product m2n − 2n−1, boolean operations mn.
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