23 research outputs found

    The Complexity of Finding Dense Subgraphs in Graphs with Large Cliques

    Get PDF
    The GapDensest-k-Subgraph(d) problem (GapDkS(d)) is defined as follows: given a graph G and parameters k,d, distinguish between the case that G contains a k-clique, and the case that every k-subgraph of G has density at most d. GapDkS(d) is a natural relaxation of the standard Clique problem, which is known to be NP-complete. For d very close to 1, the GapDkS(d) problem is equivalent to the Clique problem, and when d is very close to 0 the GapDkS(d) problem can easily be solved in polynomial time. However, despite much work on both the algorithmic and hardness front, the exact k and d parameter values for which GapDkS(d) can be solved in polynomial time are still unknown. In particular, the best polynomial-time algorithms can solve GapDkS(d) when d is an inverse polynomial in the number of vertices n, but there have been no NP-hardness results beyond the trivial result. This thesis attempts to understand the GapDkS(d) problem better by studying the case when k is restricted to be linear in n (where n is the number of vertices in G). In particular, we survey the GapDkS(d) algorithms and hardness results that can be best applied to this restriction in an attempt to determine the threshold for when the problem becomes NP-hard. With some modifications to the algorithms and proofs, we produce algorithms and hardness results for the GapDkS(d) problem with k linear in n. In addition, we study the connection between GapDkS(d) and MaxClique, and show that despite having strong hardness results for MaxClique, reductions from MaxClique do not give strong hardness bounds for GapDkS(d)

    Graphs without a partition into two proportionally dense subgraphs

    Get PDF
    A proportionally dense subgraph (PDS) is an induced subgraph of a graph such that each vertex in the PDS is adjacent to proportionally as many vertices in the subgraph as in the rest of the graph. In this paper, we study a partition of a graph into two proportionally dense subgraphs, namely a 2-PDS partition, with and without additional constraint of connectivity of the subgraphs. We present two infinite classes of graphs: one with graphs without a 2-PDS partition, and another with graphs that only admit a disconnected 2-PDS partition. These results answer some questions proposed by Bazgan et al. (2018)

    Where Graph Topology Matters: The Robust Subgraph Problem

    Full text link
    Robustness is a critical measure of the resilience of large networked systems, such as transportation and communication networks. Most prior works focus on the global robustness of a given graph at large, e.g., by measuring its overall vulnerability to external attacks or random failures. In this paper, we turn attention to local robustness and pose a novel problem in the lines of subgraph mining: given a large graph, how can we find its most robust local subgraph (RLS)? We define a robust subgraph as a subset of nodes with high communicability among them, and formulate the RLS-PROBLEM of finding a subgraph of given size with maximum robustness in the host graph. Our formulation is related to the recently proposed general framework for the densest subgraph problem, however differs from it substantially in that besides the number of edges in the subgraph, robustness also concerns with the placement of edges, i.e., the subgraph topology. We show that the RLS-PROBLEM is NP-hard and propose two heuristic algorithms based on top-down and bottom-up search strategies. Further, we present modifications of our algorithms to handle three practical variants of the RLS-PROBLEM. Experiments on synthetic and real-world graphs demonstrate that we find subgraphs with larger robustness than the densest subgraphs even at lower densities, suggesting that the existing approaches are not suitable for the new problem setting.Comment: 13 pages, 10 Figures, 3 Tables, to appear at SDM 2015 (9 pages only

    Inapproximability of Maximum Biclique Problems, Minimum kk-Cut and Densest At-Least-kk-Subgraph from the Small Set Expansion Hypothesis

    Full text link
    The Small Set Expansion Hypothesis (SSEH) is a conjecture which roughly states that it is NP-hard to distinguish between a graph with a small subset of vertices whose edge expansion is almost zero and one in which all small subsets of vertices have expansion almost one. In this work, we prove inapproximability results for the following graph problems based on this hypothesis: - Maximum Edge Biclique (MEB): given a bipartite graph GG, find a complete bipartite subgraph of GG with maximum number of edges. - Maximum Balanced Biclique (MBB): given a bipartite graph GG, find a balanced complete bipartite subgraph of GG with maximum number of vertices. - Minimum kk-Cut: given a weighted graph GG, find a set of edges with minimum total weight whose removal partitions GG into kk connected components. - Densest At-Least-kk-Subgraph (DALkkS): given a weighted graph GG, find a set SS of at least kk vertices such that the induced subgraph on SS has maximum density (the ratio between the total weight of edges and the number of vertices). We show that, assuming SSEH and NP \nsubseteq BPP, no polynomial time algorithm gives n1εn^{1 - \varepsilon}-approximation for MEB or MBB for every constant ε>0\varepsilon > 0. Moreover, assuming SSEH, we show that it is NP-hard to approximate Minimum kk-Cut and DALkkS to within (2ε)(2 - \varepsilon) factor of the optimum for every constant ε>0\varepsilon > 0. The ratios in our results are essentially tight since trivial algorithms give nn-approximation to both MEB and MBB and efficient 22-approximation algorithms are known for Minimum kk-Cut [SV95] and DALkkS [And07, KS09]. Our first result is proved by combining a technique developed by Raghavendra et al. [RST12] to avoid locality of gadget reductions with a generalization of Bansal and Khot's long code test [BK09] whereas our second result is shown via elementary reductions.Comment: A preliminary version of this work will appear at ICALP 2017 under a different title "Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis

    A Novel Approach to Finding Near-Cliques: The Triangle-Densest Subgraph Problem

    Full text link
    Many graph mining applications rely on detecting subgraphs which are near-cliques. There exists a dichotomy between the results in the existing work related to this problem: on the one hand the densest subgraph problem (DSP) which maximizes the average degree over all subgraphs is solvable in polynomial time but for many networks fails to find subgraphs which are near-cliques. On the other hand, formulations that are geared towards finding near-cliques are NP-hard and frequently inapproximable due to connections with the Maximum Clique problem. In this work, we propose a formulation which combines the best of both worlds: it is solvable in polynomial time and finds near-cliques when the DSP fails. Surprisingly, our formulation is a simple variation of the DSP. Specifically, we define the triangle densest subgraph problem (TDSP): given G(V,E)G(V,E), find a subset of vertices SS^* such that τ(S)=maxSVt(S)S\tau(S^*)=\max_{S \subseteq V} \frac{t(S)}{|S|}, where t(S)t(S) is the number of triangles induced by the set SS. We provide various exact and approximation algorithms which the solve the TDSP efficiently. Furthermore, we show how our algorithms adapt to the more general problem of maximizing the kk-clique average density. Finally, we provide empirical evidence that the TDSP should be used whenever the output of the DSP fails to output a near-clique.Comment: 42 page
    corecore