7,322 research outputs found

    Challenging Conceptions of Accessory Liability in Private Law

    Get PDF

    Armin Schulz, Efficient Cognition

    Get PDF

    An empirical analysis of terminological representation systems

    Get PDF
    The family of terminological representation systems has its roots in the representation system KL-ONE. Since the development of this system more than a dozen similar representation systems have been developed by various research groups. These systems vary along a number of dimensions.In this paper, we present the results of an empirical analysis of six such systems. Surprisingly, the systems turned out to be quite diverse leading to problems when transporting knowledge bases from one system to another. Additionally, the runtime performance between different systems and knowledge bases varied more than we expected. Finally, our empirical runtime performance results give an idea of what runtime performance to expect from such representation systems. These findings complement previously reported analytical results about the computational complexity of reasoning in such systems

    Description Logics as Ontology Languages for the Semantic Web

    Get PDF
    The vision of a Semantic Web has recently drawn considerable attention, both from academia and industry. Description logics are often named as one of the tools that can support the Semantic Web and thus help to make this vision reality. In this paper, we describe what description logics are and what they can do for the Semantic Web. Descriptions logics are very useful for defining, integrating, and maintaining ontologies, which provide the Semantic Web with a common understanding of the basic semantic concepts used to annotate Web pages. We also argue that, without the last decade of basic research in this area, description logics could not play such an important rˆole in this domain

    An empirical analysis of optimization techniques for terminological representation systems : or: \u27Making KRIS get a move on\u27

    Get PDF
    We consider different methods of optimizing the classification process of terminological representation systems, and evaluate their effect on three different types of test data. Though these techniques can probably be found in many existing systems, until now there has been no coherent description of these techniques and their impact on the performance of a system. One goal of this paper is to make such a description available for future implementors of terminological systems. Building the optimizations that came off best into the KRIS system greatly enhanced its efficiency

    Is a Semantic Web Agent a Knowledge-Savvy Agent?

    No full text
    The issue of knowledge sharing has permeated the field of distributed AI and in particular, its successor, multiagent systems. Through the years, many research and engineering efforts have tackled the problem of encoding and sharing knowledge without the need for a single, centralized knowledge base. However, the emergence of modern computing paradigms such as distributed, open systems have highlighted the importance of sharing distributed and heterogeneous knowledge at a larger scale—possibly at the scale of the Internet. The very characteristics that define the Semantic Web—that is, dynamic, distributed, incomplete, and uncertain knowledge—suggest the need for autonomy in distributed software systems. Semantic Web research promises more than mere management of ontologies and data through the definition of machine-understandable languages. The openness and decentralization introduced by multiagent systems and service-oriented architectures give rise to new knowledge management models, for which we can’t make a priori assumptions about the type of interaction an agent or a service may be engaged in, and likewise about the message protocols and vocabulary used. We therefore discuss the problem of knowledge management for open multi-agent systems, and highlight a number of challenges relating to the exchange and evolution of knowledge in open environments, which pertinent to both the Semantic Web and Multi Agent System communities alike

    Reasoning and Change Management in Modular Ontologies

    Get PDF
    The benefits of modular representations are well known from many areas of computer science. In this paper, we concentrate on the benefits of modular ontologies with respect to local containment of terminological reasoning. We define an architecture for modular ontologies that supports local reasoning by compiling implied subsumption relations. We further address the problem of guaranteeing the integrity of a modular ontology in the presence of local changes. We propose a strategy for analyzing changes and guiding the process of updating compiled information
    • 

    corecore