1,575 research outputs found

    Complexity of Some Problems Concerning Varieties and Quasi-Varieties of Algebras

    Get PDF
    In this paper we consider the complexity of several problems involving finite algebraic structures. Given finite algebras A and B, these problems ask the following. (1) Do A and B satisfy precisely the same identities? (2) Do they satisfy the same quasi-identities? (3) Do A and B have the same set of term operations? In addition to the general case in which we allow arbitrary (finite) algebras, we consider each of these problems under the restrictions that all operations are unary and that A and B have cardinality two. We briefly discuss the relationship of these problems to algebraic specification theory

    The wonderland of reflections

    Full text link
    A fundamental fact for the algebraic theory of constraint satisfaction problems (CSPs) over a fixed template is that pp-interpretations between at most countable \omega-categorical relational structures have two algebraic counterparts for their polymorphism clones: a semantic one via the standard algebraic operators H, S, P, and a syntactic one via clone homomorphisms (capturing identities). We provide a similar characterization which incorporates all relational constructions relevant for CSPs, that is, homomorphic equivalence and adding singletons to cores in addition to pp-interpretations. For the semantic part we introduce a new construction, called reflection, and for the syntactic part we find an appropriate weakening of clone homomorphisms, called h1 clone homomorphisms (capturing identities of height 1). As a consequence, the complexity of the CSP of an at most countable ω\omega-categorical structure depends only on the identities of height 1 satisfied in its polymorphism clone as well as the the natural uniformity thereon. This allows us in turn to formulate a new elegant dichotomy conjecture for the CSPs of reducts of finitely bounded homogeneous structures. Finally, we reveal a close connection between h1 clone homomorphisms and the notion of compatibility with projections used in the study of the lattice of interpretability types of varieties.Comment: 24 page

    A minimal nonfinitely based semigroup whose variety is polynomially recognizable

    Full text link
    We exhibit a 6-element semigroup that has no finite identity basis but nevertheless generates a variety whose finite membership problem admits a polynomial algorithm.Comment: 16 pages, 3 figure
    corecore