7,256 research outputs found

    Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages

    Get PDF
    A language LL over an alphabet Σ\Sigma is suffix-convex if, for any words x,y,z∈Σ∗x,y,z\in\Sigma^*, whenever zz and xyzxyz are in LL, then so is yzyz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal on these languages, as well as the size of their syntactic semigroups, and the quotient complexity of their atoms.Comment: 20 pages, 11 figures, 1 table. arXiv admin note: text overlap with arXiv:1605.0669

    Syntactic Complexity of Prefix-, Suffix-, Bifix-, and Factor-Free Regular Languages

    Get PDF
    The syntactic complexity of a regular language is the cardinality of its syntactic semigroup. The syntactic complexity of a subclass of the class of regular languages is the maximal syntactic complexity of languages in that class, taken as a function of the state complexity nn of these languages. We study the syntactic complexity of prefix-, suffix-, bifix-, and factor-free regular languages. We prove that nn−2n^{n-2} is a tight upper bound for prefix-free regular languages. We present properties of the syntactic semigroups of suffix-, bifix-, and factor-free regular languages, conjecture tight upper bounds on their size to be (n−1)n−2+(n−2)(n-1)^{n-2}+(n-2), (n−1)n−3+(n−2)n−3+(n−3)2n−3(n-1)^{n-3} + (n-2)^{n-3} + (n-3)2^{n-3}, and (n−1)n−3+(n−3)2n−3+1(n-1)^{n-3} + (n-3)2^{n-3} + 1, respectively, and exhibit languages with these syntactic complexities.Comment: 28 pages, 6 figures, 3 tables. An earlier version of this paper was presented in: M. Holzer, M. Kutrib, G. Pighizzini, eds., 13th Int. Workshop on Descriptional Complexity of Formal Systems, DCFS 2011, Vol. 6808 of LNCS, Springer, 2011, pp. 93-106. The current version contains improved bounds for suffix-free languages, new results about factor-free languages, and new results about reversa

    A New Technique for Reachability of States in Concatenation Automata

    Full text link
    We present a new technique for demonstrating the reachability of states in deterministic finite automata representing the concatenation of two languages. Such demonstrations are a necessary step in establishing the state complexity of the concatenation of two languages, and thus in establishing the state complexity of concatenation as an operation. Typically, ad-hoc induction arguments are used to show particular states are reachable in concatenation automata. We prove some results that seem to capture the essence of many of these induction arguments. Using these results, reachability proofs in concatenation automata can often be done more simply and without using induction directly.Comment: 23 pages, 1 table. Added missing affiliation/funding informatio

    Languages convex with respect to binary relations, and their closure properties

    Get PDF
    A language is prefix-convex if it satisfies the condition that, if a word w and its prefix u are in the language, then so is every prefix of w that has u as a prefix. Prefix-convex languages include prefix-closed languages at one end of the spectrum, and prefix-free languages, which include prefix codes, at the other. In a similar way, we define suffix-, bifix-, factor-, and subword-convex languages and their closed and free counterparts. This provides a common framework for diverse languages such as codes, factorial languages and ideals. We examine the relationships among these languages. We generalize these notions to arbitrary binary relations on the set of all words over a given alphabet, and study the closure properties of such languages

    Syntactic Complexity of Finite/Cofinite, Definite, and Reverse Definite Languages

    Full text link
    We study the syntactic complexity of finite/cofinite, definite and reverse definite languages. The syntactic complexity of a class of languages is defined as the maximal size of syntactic semigroups of languages from the class, taken as a function of the state complexity n of the languages. We prove that (n-1)! is a tight upper bound for finite/cofinite languages and that it can be reached only if the alphabet size is greater than or equal to (n-1)!-(n-2)!. We prove that the bound is also (n-1)! for reverse definite languages, but the minimal alphabet size is (n-1)!-2(n-2)!. We show that \lfloor e\cdot (n-1)!\rfloor is a lower bound on the syntactic complexity of definite languages, and conjecture that this is also an upper bound, and that the alphabet size required to meet this bound is \floor{e \cdot (n-1)!} - \floor{e \cdot (n-2)!}. We prove the conjecture for n\le 4.Comment: 10 pages. An error concerning the size of the alphabet has been corrected in Theorem
    • …
    corecore