73,769 research outputs found

    Computing Horn Rewritings of Description Logics Ontologies

    Full text link
    We study the problem of rewriting an ontology O1 expressed in a DL L1 into an ontology O2 in a Horn DL L2 such that O1 and O2 are equisatisfiable when extended with an arbitrary dataset. Ontologies that admit such rewritings are amenable to reasoning techniques ensuring tractability in data complexity. After showing undecidability whenever L1 extends ALCF, we focus on devising efficiently checkable conditions that ensure existence of a Horn rewriting. By lifting existing techniques for rewriting Disjunctive Datalog programs into plain Datalog to the case of arbitrary first-order programs with function symbols, we identify a class of ontologies that admit Horn rewritings of polynomial size. Our experiments indicate that many real-world ontologies satisfy our sufficient conditions and thus admit polynomial Horn rewritings.Comment: 15 pages. To appear in IJCAI-1

    Datalog Rewritability of Disjunctive Datalog Programs and its Applications to Ontology Reasoning

    Full text link
    We study the problem of rewriting a disjunctive datalog program into plain datalog. We show that a disjunctive program is rewritable if and only if it is equivalent to a linear disjunctive program, thus providing a novel characterisation of datalog rewritability. Motivated by this result, we propose weakly linear disjunctive datalog---a novel rule-based KR language that extends both datalog and linear disjunctive datalog and for which reasoning is tractable in data complexity. We then explore applications of weakly linear programs to ontology reasoning and propose a tractable extension of OWL 2 RL with disjunctive axioms. Our empirical results suggest that many non-Horn ontologies can be reduced to weakly linear programs and that query answering over such ontologies using a datalog engine is feasible in practice.Comment: 14 pages. To appear at AAAI-1

    Ontology-based data access with a horn fragment of metric temporal logic

    Get PDF
    We advocate datalogMTL, a datalog extension of a Horn fragment of the metric temporal logic MTL, as a language for ontology-based access to temporal log data. We show that datalogMTL is EXPSPACE-complete even with punctual intervals, in which case MTL is known to be undecidable. Nonrecursive datalogMTL turns out to be PSPACE-complete for combined complexity and in AC0 for data complexity. We demonstrate by two real-world use cases that nonrecursive datalogMTL programs can express complex temporal concepts from typical user queries and thereby facilitate access to log data. Our experiments with Siemens turbine data and MesoWest weather data show that datalogMTL ontology-mediated queries are efficient and scale on large datasets of up to 11GB

    Exploiting Unfounded Sets for HEX-Program Evaluation

    Get PDF
    HEX programs extend logic programs with external computations through external atoms, whose answer sets are the minimal models of the Faber-Leone-Pfeifer-reduct. As already reasoning from Horn programs with nonmonotonic external atoms of polynomial complexity is on the second level of the polynomial hierarchy, answer set checking needs special attention; simply computing reducts and searching for smaller models does not scale well. We thus extend an approach based on unfounded sets to HEX and integrate it in a Conflict Driven Clause Learning framework for HEX program evaluation. It reduces the check to a search for unfounded sets, which is more efficiently implemented as a SAT problem. We give a basic encoding for HEX and show optimizations by additional clauses. Experiments show that the new approach significantly decreases runtime
    corecore