7,556 research outputs found

    The hardness of routing two pairs on one face

    Full text link
    We prove the NP-completeness of the integer multiflow problem in planar graphs, with the following restrictions: there are only two demand edges, both lying on the infinite face of the routing graph. This was one of the open challenges concerning disjoint paths, explicitly asked by M\"uller. It also strengthens Schw\"arzler's recent proof of one of the open problems of Schrijver's book, about the complexity of the edge-disjoint paths problem with terminals on the outer boundary of a planar graph. We also give a directed acyclic reduction. This proves that the arc-disjoint paths problem is NP-complete in directed acyclic graphs, even with only two demand arcs

    Complexity of disjoint paths problems in planar graphs

    Get PDF

    On disjoint paths in acyclic planar graphs

    Full text link
    We give an algorithm with complexity O(f(R)k2k3n)O(f(R)^{k^2} k^3 n) for the integer multiflow problem on instances (G,H,r,c)(G,H,r,c) with GG an acyclic planar digraph and r+cr+c Eulerian. Here, ff is a polynomial function, n=V(G)n = |V(G)|, k=E(H)k = |E(H)| and RR is the maximum request maxhE(H)r(h)\max_{h \in E(H)} r(h). When kk is fixed, this gives a polynomial algorithm for the arc-disjoint paths problem under the same hypothesis

    Walking Through Waypoints

    Full text link
    We initiate the study of a fundamental combinatorial problem: Given a capacitated graph G=(V,E)G=(V,E), find a shortest walk ("route") from a source sVs\in V to a destination tVt\in V that includes all vertices specified by a set WV\mathscr{W}\subseteq V: the \emph{waypoints}. This waypoint routing problem finds immediate applications in the context of modern networked distributed systems. Our main contribution is an exact polynomial-time algorithm for graphs of bounded treewidth. We also show that if the number of waypoints is logarithmically bounded, exact polynomial-time algorithms exist even for general graphs. Our two algorithms provide an almost complete characterization of what can be solved exactly in polynomial-time: we show that more general problems (e.g., on grid graphs of maximum degree 3, with slightly more waypoints) are computationally intractable

    Vertex Disjoint Path in Upward Planar Graphs

    Full text link
    The kk-vertex disjoint paths problem is one of the most studied problems in algorithmic graph theory. In 1994, Schrijver proved that the problem can be solved in polynomial time for every fixed kk when restricted to the class of planar digraphs and it was a long standing open question whether it is fixed-parameter tractable (with respect to parameter kk) on this restricted class. Only recently, \cite{CMPP}.\ achieved a major breakthrough and answered the question positively. Despite the importance of this result (and the brilliance of their proof), it is of rather theoretical importance. Their proof technique is both technically extremely involved and also has at least double exponential parameter dependence. Thus, it seems unrealistic that the algorithm could actually be implemented. In this paper, therefore, we study a smaller class of planar digraphs, the class of upward planar digraphs, a well studied class of planar graphs which can be drawn in a plane such that all edges are drawn upwards. We show that on the class of upward planar digraphs the problem (i) remains NP-complete and (ii) the problem is fixed-parameter tractable. While membership in FPT follows immediately from \cite{CMPP}'s general result, our algorithm has only single exponential parameter dependency compared to the double exponential parameter dependence for general planar digraphs. Furthermore, our algorithm can easily be implemented, in contrast to the algorithm in \cite{CMPP}.Comment: 14 page

    Parameterizing Path Partitions

    Full text link
    We study the algorithmic complexity of partitioning the vertex set of a given (di)graph into a small number of paths. The Path Partition problem (PP) has been studied extensively, as it includes Hamiltonian Path as a special case. The natural variants where the paths are required to be either \emph{induced} (Induced Path Partition, IPP) or \emph{shortest} (Shortest Path Partition, SPP), have received much less attention. Both problems are known to be NP-complete on undirected graphs; we strengthen this by showing that they remain so even on planar bipartite directed acyclic graphs (DAGs), and that SPP remains \NP-hard on undirected bipartite graphs. When parameterized by the natural parameter ``number of paths'', both SPP and IPP are shown to be W{1}-hard on DAGs. We also show that SPP is in \XP both for DAGs and undirected graphs for the same parameter, as well as for other special subclasses of directed graphs (IPP is known to be NP-hard on undirected graphs, even for two paths). On the positive side, we show that for undirected graphs, both problems are in FPT, parameterized by neighborhood diversity. We also give an explicit algorithm for the vertex cover parameterization of PP. When considering the dual parameterization (graph order minus number of paths), all three variants, IPP, SPP and PP, are shown to be in FPT for undirected graphs. We also lift the mentioned neighborhood diversity and dual parameterization results to directed graphs; here, we need to define a proper novel notion of directed neighborhood diversity. As we also show, most of our results also transfer to the case of covering by edge-disjoint paths, and purely covering.Comment: 27 pages, 8 figures. A short version appeared in the proceedings of the CIAC 2023 conferenc
    corecore