23 research outputs found

    Towards completing the puzzle: complexity of control by replacing, adding, and deleting candidates or voters

    Get PDF
    We investigate the computational complexity of electoral control in elections. Electoral control describes the scenario where the election chair seeks to alter the outcome of the election by structural changes such as adding, deleting, or replacing either candidates or voters. Such control actions have been studied in the literature for a lot of prominent voting rules. We complement those results by solving several open cases for Copelandα, maximin, k-veto, plurality with runoff, veto with runoff, Condorcet, fallback, range voting, and normalized range voting

    Computational aspects of voting: a literature survey

    Get PDF
    Preference aggregation is a topic of study in different fields such as philosophy, mathematics, economics and political science. Recently, computational aspects of preference aggregation have gained especial attention and “computational politics” has emerged as a marked line of research in computer science with a clear concentration on voting protocols. The field of voting systems, rooted in social choice theory, has expanded notably in both depth and breadth in the last few decades. A significant amount of this growth comes from studies concerning the computational aspects of voting systems. This thesis comprehensively reviews the work on voting systems (from a computing perspective) by listing, classifying and comparing the results obtained by different researchers in the field. This survey covers a wide range of new and historical results yet provides a profound commentary on related work as individual studies and in relation to other related work and to the field in general. The deliverables serve as an overview where students and novice researchers in the field can start and also as a depository that can be referred to when searching for specific results. A comprehensive literature survey of the computational aspects of voting is a task that has not been undertaken yet and is initially realized here. Part of this research was dedicated to creating a web-depository that contains material and references related to the topic based on the survey. The purpose was to create a dynamic version of the survey that can be updated with latest findings and as an online practical reference

    Schulze and Ranked-Pairs Voting are Fixed-Parameter Tractable to Bribe, Manipulate, and Control

    Full text link
    Schulze and ranked-pairs elections have received much attention recently, and the former has quickly become a quite widely used election system. For many cases these systems have been proven resistant to bribery, control, or manipulation, with ranked pairs being particularly praised for being NP-hard for all three of those. Nonetheless, the present paper shows that with respect to the number of candidates, Schulze and ranked-pairs elections are fixed-parameter tractable to bribe, control, and manipulate: we obtain uniform, polynomial-time algorithms whose degree does not depend on the number of candidates. We also provide such algorithms for some weighted variants of these problems

    A deep exploration of the complexity border of strategic voting problems

    Get PDF
    Voting has found applications in a variety of areas. Unfortunately, in a voting activity there may exist strategic individuals who have incentives to attack the election by performing some strategic behavior. One possible way to address this issue is to use computational complexity as a barrier against the strategic behavior. The point is that if it is NP-hard to successfully perform a strategic behavior, the strategic individuals may give up their plan of attacking the election. This thesis is concerned with strategic behavior in restricted elections, in the sense that the given elections are subject to some combinatorial restrictions. The goal is to find out how the complexity of the strategic behavior changes from the very restricted case to the general case.Abstimmungen werden auf verschiedene Gebiete angewendet. Leider kann es bei einer Abstimmung einzelne Teilnehmer geben, die Vorteile daraus ziehen, die Wahl durch strategisches Verhalten zu manipulieren. Eine Möglichkeit diesem Problem zu begegnen ist es, die Berechnungskomplexität als Hindernis gegen strategisches Verhalten zu nutzen. Die Annahme ist, dass falls es NP-schwer ist, um strategisches Verhalten erfolgreich anzuwenden, der strategisch Handelnde vielleicht den Plan aufgibt die Abstimmung zu attackieren. Diese Arbeit befasst sich mit strategischem Vorgehen in eingeschränkten Abstimmungen in dem Sinne, dass die vorgegebenen Abstimmungen kombinatorischen Einschränkungen unterliegen. Ziel ist es herauszufinden, wie sich die Komplexität des strategischen Handelns von dem sehr eingeschränkten zu dem generellen Fall ändert
    corecore