15,095 research outputs found

    Computing the First Betti Numberand Describing the Connected Components of Semi-algebraic Sets

    Full text link
    In this paper we describe a singly exponential algorithm for computing the first Betti number of a given semi-algebraic set. Singly exponential algorithms for computing the zero-th Betti number, and the Euler-Poincar\'e characteristic, were known before. No singly exponential algorithm was known for computing any of the individual Betti numbers other than the zero-th one. We also give algorithms for obtaining semi-algebraic descriptions of the semi-algebraically connected components of any given real algebraic or semi-algebraic set in single-exponential time improving on previous results

    Computing the First Few Betti Numbers of Semi-algebraic Sets in Single Exponential Time

    Get PDF
    In this paper we describe an algorithm that takes as input a description of a semi-algebraic set SRkS \subset \R^k, defined by a Boolean formula with atoms of the form P>0,P<0,P=0P > 0, P < 0, P=0 for PPR[X1,...,Xk],P \in {\mathcal P} \subset \R[X_1,...,X_k], and outputs the first +1\ell+1 Betti numbers of SS, b0(S),...,b(S).b_0(S),...,b_\ell(S). The complexity of the algorithm is (sd)kO(),(sd)^{k^{O(\ell)}}, where where s = #({\mathcal P}) and d=maxPPdeg(P),d = \max_{P\in {\mathcal P}}{\rm deg}(P), which is singly exponential in kk for \ell any fixed constant. Previously, singly exponential time algorithms were known only for computing the Euler-Poincar\'e characteristic, the zero-th and the first Betti numbers

    Efficient algorithms for computing the Euler-Poincar\'e characteristic of symmetric semi-algebraic sets

    Full text link
    Let R\mathrm{R} be a real closed field and DR\mathrm{D} \subset \mathrm{R} an ordered domain. We consider the algorithmic problem of computing the generalized Euler-Poincar\'e characteristic of real algebraic as well as semi-algebraic subsets of Rk\mathrm{R}^k, which are defined by symmetric polynomials with coefficients in D\mathrm{D}. We give algorithms for computing the generalized Euler-Poincar\'e characteristic of such sets, whose complexities measured by the number the number of arithmetic operations in D\mathrm{D}, are polynomially bounded in terms of kk and the number of polynomials in the input, assuming that the degrees of the input polynomials are bounded by a constant. This is in contrast to the best complexity of the known algorithms for the same problems in the non-symmetric situation, which are singly exponential. This singly exponential complexity for the latter problem is unlikely to be improved because of hardness result (#P\#\mathbf{P}-hardness) coming from discrete complexity theory.Comment: 29 pages, 1 Figure. arXiv admin note: substantial text overlap with arXiv:1312.658

    Algorithmic Semi-algebraic Geometry and Topology -- Recent Progress and Open Problems

    Full text link
    We give a survey of algorithms for computing topological invariants of semi-algebraic sets with special emphasis on the more recent developments in designing algorithms for computing the Betti numbers of semi-algebraic sets. Aside from describing these results, we discuss briefly the background as well as the importance of these problems, and also describe the main tools from algorithmic semi-algebraic geometry, as well as algebraic topology, which make these advances possible. We end with a list of open problems.Comment: Survey article, 74 pages, 15 figures. Final revision. This version will appear in the AMS Contemporary Math. Series: Proceedings of the Summer Research Conference on Discrete and Computational Geometry, Snowbird, Utah (June, 2006). J.E. Goodman, J. Pach, R. Pollack Ed

    Solving parametric systems of polynomial equations over the reals through Hermite matrices

    Full text link
    We design a new algorithm for solving parametric systems having finitely many complex solutions for generic values of the parameters. More precisely, let f=(f1,,fm)Q[y][x]f = (f_1, \ldots, f_m)\subset \mathbb{Q}[y][x] with y=(y1,,yt)y = (y_1, \ldots, y_t) and x=(x1,,xn)x = (x_1, \ldots, x_n), VCt+nV\subset \mathbb{C}^{t+n} be the algebraic set defined by ff and π\pi be the projection (y,x)y(y, x) \to y. Under the assumptions that ff admits finitely many complex roots for generic values of yy and that the ideal generated by ff is radical, we solve the following problem. On input ff, we compute semi-algebraic formulas defining semi-algebraic subsets S1,,SlS_1, \ldots, S_l of the yy-space such that i=1lSi\cup_{i=1}^l S_i is dense in Rt\mathbb{R}^t and the number of real points in Vπ1(η)V\cap \pi^{-1}(\eta) is invariant when η\eta varies over each SiS_i. This algorithm exploits properties of some well chosen monomial bases in the algebra Q(y)[x]/I\mathbb{Q}(y)[x]/I where II is the ideal generated by ff in Q(y)[x]\mathbb{Q}(y)[x] and the specialization property of the so-called Hermite matrices. This allows us to obtain compact representations of the sets SiS_i by means of semi-algebraic formulas encoding the signature of a symmetric matrix. When ff satisfies extra genericity assumptions, we derive complexity bounds on the number of arithmetic operations in Q\mathbb{Q} and the degree of the output polynomials. Let dd be the maximal degree of the fif_i's and D=n(d1)dnD = n(d-1)d^n, we prove that, on a generic f=(f1,,fn)f=(f_1,\ldots,f_n), one can compute those semi-algebraic formulas with O ((t+Dt)23tn2t+1d3nt+2(n+t)+1)O^~( \binom{t+D}{t}2^{3t}n^{2t+1} d^{3nt+2(n+t)+1}) operations in Q\mathbb{Q} and that the polynomials involved have degree bounded by DD. We report on practical experiments which illustrate the efficiency of our algorithm on generic systems and systems from applications. It allows us to solve problems which are out of reach of the state-of-the-art
    corecore