1,009,284 research outputs found
Optimal Quantum Sample Complexity of Learning Algorithms
In learning theory, the VC dimension of a
concept class is the most common way to measure its "richness." In the PAC
model \Theta\Big(\frac{d}{\eps} + \frac{\log(1/\delta)}{\eps}\Big)
examples are necessary and sufficient for a learner to output, with probability
, a hypothesis that is \eps-close to the target concept . In
the related agnostic model, where the samples need not come from a , we
know that \Theta\Big(\frac{d}{\eps^2} + \frac{\log(1/\delta)}{\eps^2}\Big)
examples are necessary and sufficient to output an hypothesis whose
error is at most \eps worse than the best concept in .
Here we analyze quantum sample complexity, where each example is a coherent
quantum state. This model was introduced by Bshouty and Jackson, who showed
that quantum examples are more powerful than classical examples in some
fixed-distribution settings. However, Atici and Servedio, improved by Zhang,
showed that in the PAC setting, quantum examples cannot be much more powerful:
the required number of quantum examples is
\Omega\Big(\frac{d^{1-\eta}}{\eps} + d + \frac{\log(1/\delta)}{\eps}\Big)\mbox{
for all }\eta> 0. Our main result is that quantum and classical sample
complexity are in fact equal up to constant factors in both the PAC and
agnostic models. We give two approaches. The first is a fairly simple
information-theoretic argument that yields the above two classical bounds and
yields the same bounds for quantum sample complexity up to a \log(d/\eps)
factor. We then give a second approach that avoids the log-factor loss, based
on analyzing the behavior of the "Pretty Good Measurement" on the quantum state
identification problems that correspond to learning. This shows classical and
quantum sample complexity are equal up to constant factors.Comment: 31 pages LaTeX. Arxiv abstract shortened to fit in their
1920-character limit. Version 3: many small changes, no change in result
Complexity of and Algorithms for Borda Manipulation
We prove that it is NP-hard for a coalition of two manipulators to compute
how to manipulate the Borda voting rule. This resolves one of the last open
problems in the computational complexity of manipulating common voting rules.
Because of this NP-hardness, we treat computing a manipulation as an
approximation problem where we try to minimize the number of manipulators.
Based on ideas from bin packing and multiprocessor scheduling, we propose two
new approximation methods to compute manipulations of the Borda rule.
Experiments show that these methods significantly outperform the previous best
known %existing approximation method. We are able to find optimal manipulations
in almost all the randomly generated elections tested. Our results suggest
that, whilst computing a manipulation of the Borda rule by a coalition is
NP-hard, computational complexity may provide only a weak barrier against
manipulation in practice
Simplex minimisation for multiple-reference motion estimation
This paper investigates the properties of the multiple-reference block motion field. Guided by the results of this investigation, the paper proposes three fast multiple-reference block matching motion estimation algorithms. The proposed algorithms are extensions of the single-reference simplex minimisation search (SMS) algorithm. The algorithms provide different degrees of compromise between prediction quality and computational complexity. Simulation results using a multi-frame memory of 50 frames indicate that the proposed multiple-reference SMS algorithms have a computational complexity comparable to that of single-reference full-search while still maintaining the prediction gain of multiple-reference motion estimatio
Logical Algorithms meets CHR: A meta-complexity result for Constraint Handling Rules with rule priorities
This paper investigates the relationship between the Logical Algorithms
language (LA) of Ganzinger and McAllester and Constraint Handling Rules (CHR).
We present a translation schema from LA to CHR-rp: CHR with rule priorities,
and show that the meta-complexity theorem for LA can be applied to a subset of
CHR-rp via inverse translation. Inspired by the high-level implementation
proposal for Logical Algorithm by Ganzinger and McAllester and based on a new
scheduling algorithm, we propose an alternative implementation for CHR-rp that
gives strong complexity guarantees and results in a new and accurate
meta-complexity theorem for CHR-rp. It is furthermore shown that the
translation from Logical Algorithms to CHR-rp combined with the new CHR-rp
implementation, satisfies the required complexity for the Logical Algorithms
meta-complexity result to hold.Comment: To appear in Theory and Practice of Logic Programming (TPLP
- …
