48 research outputs found

    Complexity of planar signed graph homomorphisms to cycles

    Full text link
    We study homomorphism problems of signed graphs. A signed graph is an undirected graph where each edge is given a sign, positive or negative. An important concept for signed graphs is the operation of switching at a vertex, which is to change the sign of each incident edge. A homomorphism of a graph is a vertex-mapping that preserves the adjacencies; in the case of signed graphs, we also preserve the edge-signs. Special homomorphisms of signed graphs, called s-homomorphisms, have been studied. In an s-homomorphism, we allow, before the mapping, to perform any number of switchings on the source signed graph. This concept has been extensively studied, and a full complexity classification (polynomial or NP-complete) for s-homomorphism to a fixed target signed graph has recently been obtained. Such a dichotomy is not known when we restrict the input graph to be planar (not even for non-signed graph homomorphisms). We show that deciding whether a (non-signed) planar graph admits a homomorphism to the square Ct2C_t^2 of a cycle with t≄6t\ge 6, or to the circular clique K4t/(2t−1)K_{4t/(2t-1)} with t≄2t\ge2, are NP-complete problems. We use these results to show that deciding whether a planar signed graph admits an s-homomorphism to an unbalanced even cycle is NP-complete. (A cycle is unbalanced if it has an odd number of negative edges). We deduce a complete complexity dichotomy for the planar s-homomorphism problem with any signed cycle as a target. We also study further restrictions involving the maximum degree and the girth of the input signed graph. We prove that planar s-homomorphism problems to signed cycles remain NP-complete even for inputs of maximum degree~33 (except for the case of unbalanced 44-cycles, for which we show this for maximum degree~44). We also show that for a given integer gg, the problem for signed bipartite planar inputs of girth gg is either trivial or NP-complete.Comment: 17 pages, 10 figure

    Pushable chromatic number of graphs with degree constraints

    Get PDF
    Pushable homomorphisms and the pushable chromatic number χp\chi_p of oriented graphs were introduced by Klostermeyer and MacGillivray in 2004. They notably observed that, for any oriented graph G→\overrightarrow{G}, we have χp(G→)≀χo(G→)≀2χp(G→)\chi_p(\overrightarrow{G}) \leq \chi_o(\overrightarrow{G}) \leq 2 \chi_p(\overrightarrow{G}), where χo(G→)\chi_o(\overrightarrow{G}) denotes the oriented chromatic number of G→\overrightarrow{G}. This stands as first general bounds on χp\chi_p. This parameter was further studied in later works.This work is dedicated to the pushable chromatic number of oriented graphs fulfilling particular degree conditions. For all Δ≄29\Delta \geq 29, we first prove that the maximum value of the pushable chromatic number of an oriented graph with maximum degree Δ\Delta lies between 2Δ2−12^{\frac{\Delta}{2}-1} and (Δ−3)⋅(Δ−1)⋅2Δ−1+2(\Delta-3) \cdot (\Delta-1) \cdot 2^{\Delta-1} + 2 which implies an improved bound on the oriented chromatic number of the same family of graphs. For subcubic oriented graphs, that is, when Δ≀3\Delta \leq 3, we then prove that the maximum value of the pushable chromatic number is~66 or~77. We also prove that the maximum value of the pushable chromatic number of oriented graphs with maximum average degree less than~33 lies between~55 and~66. The former upper bound of~77 also holds as an upper bound on the pushable chromatic number of planar oriented graphs with girth at least~66

    Hardness Transitions of Star Colouring and Restricted Star Colouring

    Full text link
    We study how the complexity of the graph colouring problems star colouring and restricted star colouring vary with the maximum degree of the graph. Restricted star colouring (in short, rs colouring) is a variant of star colouring. For k∈Nk\in \mathbb{N}, a kk-colouring of a graph GG is a function f ⁣:V(G)→Zkf\colon V(G)\to \mathbb{Z}_k such that f(u)≠f(v)f(u)\neq f(v) for every edge uvuv of GG. A kk-colouring of GG is called a kk-star colouring of GG if there is no path u,v,w,xu,v,w,x in GG with f(u)=f(w)f(u)=f(w) and f(v)=f(x)f(v)=f(x). A kk-colouring of GG is called a kk-rs colouring of GG if there is no path u,v,wu,v,w in GG with f(v)>f(u)=f(w)f(v)>f(u)=f(w). For k∈Nk\in \mathbb{N}, the problem kk-STAR COLOURABILITY takes a graph GG as input and asks whether GG admits a kk-star colouring. The problem kk-RS COLOURABILITY is defined similarly. Recently, Brause et al. (Electron. J. Comb., 2022) investigated the complexity of 3-star colouring with respect to the graph diameter. We study the complexity of kk-star colouring and kk-rs colouring with respect to the maximum degree for all k≄3k\geq 3. For k≄3k\geq 3, let us denote the least integer dd such that kk-STAR COLOURABILITY (resp. kk-RS COLOURABILITY) is NP-complete for graphs of maximum degree dd by Ls(k)L_s^{(k)} (resp. Lrs(k)L_{rs}^{(k)}). We prove that for k=5k=5 and k≄7k\geq 7, kk-STAR COLOURABILITY is NP-complete for graphs of maximum degree k−1k-1. We also show that 44-RS COLOURABILITY is NP-complete for planar 3-regular graphs of girth 5 and kk-RS COLOURABILITY is NP-complete for triangle-free graphs of maximum degree k−1k-1 for k≄5k\geq 5. Using these results, we prove the following: (i) for k≄4k\geq 4 and d≀k−1d\leq k-1, kk-STAR COLOURABILITY is NP-complete for dd-regular graphs if and only if d≄Ls(k)d\geq L_s^{(k)}; and (ii) for k≄4k\geq 4, kk-RS COLOURABILITY is NP-complete for dd-regular graphs if and only if Lrs(k)≀d≀k−1L_{rs}^{(k)}\leq d\leq k-1

    Pushable chromatic number of graphs with degree constraints

    Get PDF
    International audiencePushable homomorphisms and the pushable chromatic number χp\chi_p of oriented graphs were introduced by Klostermeyer and MacGillivray in 2004. They notably observed that, for any oriented graph G→\overrightarrow{G}, we have χp(G→)≀χo(G→)≀2χp(G→)\chi_p(\overrightarrow{G}) \leq \chi_o(\overrightarrow{G}) \leq 2 \chi_p(\overrightarrow{G}), where χo(G→)\chi_o(\overrightarrow{G}) denotes the oriented chromatic number of G→\overrightarrow{G}. This stands as the first general bounds on χp\chi_p. This parameter was further studied in later works.This work is dedicated to the pushable chromatic number of oriented graphs fulfilling particular degree conditions. For all Δ≄29\Delta \geq 29, we first prove that the maximum value of the pushable chromatic number of a connected oriented graph with maximum degree Δ\Delta lies between 2Δ2−12^{\frac{\Delta}{2}-1} and (Δ−3)⋅(Δ−1)⋅2Δ−1+2(\Delta-3) \cdot (\Delta-1) \cdot 2^{\Delta-1} + 2 which implies an improved bound on the oriented chromatic number of the same family of graphs. For subcubic oriented graphs, that is, when Δ≀3\Delta \leq 3, we then prove that the maximum value of the pushable chromatic number is~66 or~77. We also prove that the maximum value of the pushable chromatic number of oriented graphs with maximum average degree less than~33 lies between~55 and~66. The former upper bound of~77 also holds as an upper bound on the pushable chromatic number of planar oriented graphs with girth at least~66

    Pliability and approximating max-CSPs

    Get PDF
    We identify a sufficient condition, treewidth-pliability, that gives a polynomial-time algorithm for an arbitrarily good approximation of the optimal value in a large class of Max-2-CSPs parameterised by the class of allowed constraint graphs (with arbitrary constraints on an unbounded alphabet). Our result applies more generally to the maximum homomorphism problem between two rational-valued structures. The condition unifies the two main approaches for designing a polynomial-time approximation scheme. One is Baker’s layering technique, which applies to sparse graphs such as planar or excluded-minor graphs. The other is based on Szemer®edi’s regularity lemma and applies to dense graphs. We extend the applicability of both techniques to new classes of Max-CSPs. On the other hand, we prove that the condition cannot be used to find solutions (as opposed to approximating the optimal value) in general. Treewidth-pliability turns out to be a robust notion that can be defined in several equivalent ways, including characterisations via size, treedepth, or the Hadwiger number. We show connections to the notions of fractional-treewidth-fragility from structural graph theory, hyperfiniteness from the area of property testing, and regularity partitions from the theory of dense graph limits. These may be of independent interest. In particular we show that a monotone class of graphs is hyperfinite if and only if it is fractionallytreewidth-fragile and has bounded degree
    corecore