302,397 research outputs found

    The error-bounded descriptional complexity of approximation networks

    Get PDF
    It is well known that artificial neural nets can be used as approximators of any continuous functions to any desired degree and therefore be used e.g. in high - speed, real-time process control. Nevertheless, for a given application and a given network architecture the non-trivial task remains to determine the necessary number of neurons and the necessary accuracy (number of bits) per weight for a satisfactory operation which are critical issues in VLSI and computer implementations of nontrivial tasks. In this paper the accuracy of the weights and the number of neurons are seen as general system parameters which determine the maximal approximation error by the absolute amount and the relative distribution of information contained in the network. We define as the error-bounded network descriptional complexity the minimal number of bits for a class of approximation networks which show a certain approximation error and achieve the conditions for this goal by the new principle of optimal information distribution. For two examples, a simple linear approximation of a non-linear, quadratic function and a non-linear approximation of the inverse kinematic transformation used in robot manipulator control, the principle of optimal information distribution gives the the optimal number of neurons and the resolutions of the variables, i.e. the minimal amount of storage for the neural net. Keywords: Kolmogorov complexity, e-Entropy, rate-distortion theory, approximation networks, information distribution, weight resolutions, Kohonen mapping, robot control

    A Stochastic Complexity Perspective of Induction in Economics and Inference in Dynamics

    Get PDF
    Rissanen's fertile and pioneering minimum description length principle (MDL) has been viewed from the point of view of statistical estimation theory, information theory, as stochastic complexity theory -.i.e., a computable approximation to Kolomogorov Complexity - or Solomonoff's recursion theoretic induction principle or as analogous to Kolmogorov's sufficient statistics. All these - and many more - interpretations are valid, interesting and fertile. In this paper I view it from two points of view: those of an algorithmic economist and a dynamical system theorist. >From these points of view I suggest, first, a recasting of Jevons's sceptical vision of induction in the light of MDL; and a complexity interpretation of an undecidable question in dynamics.

    Computational Efficiency Requires Simple Taxation

    Full text link
    We characterize the communication complexity of truthful mechanisms. Our departure point is the well known taxation principle. The taxation principle asserts that every truthful mechanism can be interpreted as follows: every player is presented with a menu that consists of a price for each bundle (the prices depend only on the valuations of the other players). Each player is allocated a bundle that maximizes his profit according to this menu. We define the taxation complexity of a truthful mechanism to be the logarithm of the maximum number of menus that may be presented to a player. Our main finding is that in general the taxation complexity essentially equals the communication complexity. The proof consists of two main steps. First, we prove that for rich enough domains the taxation complexity is at most the communication complexity. We then show that the taxation complexity is much smaller than the communication complexity only in "pathological" cases and provide a formal description of these extreme cases. Next, we study mechanisms that access the valuations via value queries only. In this setting we establish that the menu complexity -- a notion that was already studied in several different contexts -- characterizes the number of value queries that the mechanism makes in exactly the same way that the taxation complexity characterizes the communication complexity. Our approach yields several applications, including strengthening the solution concept with low communication overhead, fast computation of prices, and hardness of approximation by computationally efficient truthful mechanisms

    Cumulant expansion for fast estimate of non-Condon effects in vibronic transition profiles

    Full text link
    When existing, cumulants can provide valuable information about a given distribution and can in principle be used to either fully reconstruct or approximate the parent distribution function. A previously reported cumulant expansion approach for Franck-Condon profiles [Faraday Discuss., 150, 363 (2011)] is extended to describe also the profiles of vibronic transitions that are weakly allowed or forbidden in the Franck-Condon approximation (non-Condon profiles). In the harmonic approximation the cumulants of the vibronic spectral profile can be evaluated analytically and numerically with a coherent state-based generating function that accounts for the Duschinsky effect. As illustration, the one-photon 11Ag→11B2u1 ^{1}\mathrm{A_{g}}\rightarrow1 ^{1}\mathrm{B_{2u}} UV absorption spectrum of benzene in the electric dipole and (linear) Herzberg-Teller approximation is presented herein for zero Kelvin and finite temperatures.Comment: 7 pages, 1 figure; complexity discussed, method section significantly extended, computational details added, technical details explained, additional references include
    • …
    corecore