
Neural Networks, Vol.6, pp.177-187, (1993)

The error-bounded Descriptional Complexity

of Approximation Networks

Rüdiger W. Brause,

University of Frankfurt/Main, Germany

brause@cs.uni-frankfurt.de

Abstract It is well known that artificial neural nets can be used as approximators of
any continuous functions to any desired degree and therefore be used e.g. in high-
speed, real-time process control. Nevertheless, for a given application and a given
network architecture the non-trivial task remains to determine the necessary number of
neurons and the necessary accuracy (number of bits) per weight for a satisfactory
operation which are critical issues in VLSI and computer implementations of non-
trivial tasks. In this paper the accuracy of the weights and the number of neurons are
seen as general system parameters which determine the maximal approximation error
by the absolute amount and the relative distribution of information contained in the
network. We define as the error-bounded network descriptional complexity the
minimal number of bits for a class of approximation networks which show a certain
approximation error and achieve the conditions for this goal by the new principle of
optimal information distribution. For two examples, a simple linear approximation of
a non-linear, quadratic function and a non-linear approximation of the inverse
kinematic transformation used in robot manipulator control, the principle of optimal
information distribution gives the the optimal number of neurons and the resolutions
of the variables, i.e. the minimal amount of storage for the neural net.

Keywords: Kolmogorov complexity, ε-Entropy, rate-distortion theory, approximation
networks, information distribution, weight resolutions, Kohonen mapping, robot
control.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14507892?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The complexity of neural nets The complexity of neural nets - 3 -

Symbols used:

x input data vector to the net

f
^
(x) actual output of the net

f(x) desired output

δf the maximal approximation error in a compact interval

δlin the maximal error due to a linear approximation

δres the maximal error due to the finite number of bits per weight

V
s

value range of parameter s

I
s

resolution (number of bits) of parameter s

I
sys

total information (number of bits) to represent the net

K
f
^(f |x) descriptional complexity

K
f
^
,ε(f |x) error-bounded descriptional complexity

m number of neurons in the net

n number of neurons per dimension

w
i

weight i of the first layer

t
i

threshold i of the first layer

W
j

weight j of the second layer

T threshold of the second layer neuron

y
i
 output of neuron i of first layer

z
i

activation of neuron i of first layer

S(.) output function

c
i

general network parameter

L(.) function of the approximation error with Lagrange multipliers

1 Introduction

One of the most common tasks of artificial neural nets is the approximation of a given

function by the superposition of several functions of single neurons. This is especially

useful for real-time, high-speed controller for industrial process control which are

often implemented with descrete electronic components.

Similar to the well-known theorem of Stone-Weierstra ß Hornik, Stinchcomb

and White, 1989 have shown (see also e.g. Giroso and Poggio, 1990 for the property

of "best approximation" function and regularization networks) that in a compact

interval every function can be arbitrarily closely approximated in the L ∞-Norm by a

two layer neural network (see figure 1) when a sufficiently large number m of units is

provided and each unit output function S(.) satisfy the conditions S(- ∞)=0, S(∞)=1.

Fig. 1 A two-layer universal approximation network

Sufficiently large - What does this mean? How do we select the appropriate number

of neuronal processors for a certain application and implementation ?

Let us consider only the case of a one-dimensional output approximation, as it was

done in the paper of Hornik et al., 1990. Analogous results hold for multi-output

networks, i.e. vector-valued functions.

1.1 Error-bounded descriptional complexity

An important example for a feed-forward network is an approximation network. Let

us regard an approximation f
^
 of the function f: IRn →IR in a compact interval CcIRn;

not necessarily the best possible approximation function. For example, this can be

done by the two-layer neural network of figure 1. Let the maximal absolute error of

this approximation be δ
f
 with

The complexity of neural nets - 4 -

The complexity of neural nets - 5 -

δ
f
 = max |f(x)−f

^
(x)| (1.1)

 x ∈C

for a given approximation function f
^
.

We can regard the approximation error as a kind of discretization error. Denoting the

complete value range of f with

V
f
 = |f

max
- f

min
|, f

max
= max f(x), f

min
= min f(x)

 x ∈C x ∈C

we can conclude that there are only V
f
/d distinguishable, fixed states of the variable f

which differ by an increment of d=2δ
f
. All other states are undistinguishable from

deviations of the fixed states. Thus, since we do not know the input distribution of {x}

and therefore not the error distribution, the output has minimal

I
out

 = log
2
 (V

f
 /d) (1.2)

bits of information.

In the neural network network, the approximation f
^
(x) depends also on the set w

of all data bits (information) of the weights {w} of all neurons, denoted by f
^
(x,w).

The system parameters which determine the error of the approximation, are on the one

hand the resolution of the weights or its information content

I
w
 = log

2
 (V

w
/d

w
) with the weight increment d

w
 (1.3)

and on the other hand the number m of neurons.

Certainly, when we increase the number of neurons and the number of bits per

neuron the approximation will become better and the error will decrease.

Nevertheless, for a certain system with a finite amount of information storage capacity

(such as a digital computer) the network description information (system state) will be

limited. For constant system information neither one neuron with high-resolution

The complexity of neural nets - 6 -

weights nor many neurons with one bit weights will give the optimal answer; the

solution is in between the range, cf. figure 3.5.

Therefore, we have to solve the problem: what is the best information

distribution, i.e. what is the best choice for the parameters m and I
w
 to maximize the

Information I
out

 or to minimize the approximation error δ
f
, using a fixed amount of

system information I
sys

 ?

If we regard the approximation network as a channel, we can formulate the

whole problem as the task for the maximization of the transinformation between input

and output, i.e. the determination of the channel capacity. This was done in Brause

(1991). Now, let us take a different, also interesting road to the solution of the

problem.

The system information I
sys

 is just the number of bits we use for the

representation of the weights of each neuron. Since the neural algorithm f
^
 (the

network architecture) remains the same for different weight resolutions and different

number of neurons, the minimization of the system information is identical to the

minimization of the data size of the weights used in the network, apart from an

additive constant. We can think of the neural network function f
^
 as a kind of

interpreter or decoding function of the weights {w} on the condition that an input

object x is given. The descriptional complexity (see e.g. Li and Vitanyi,1990) K
f
^(f|x)

of the object f (the wanted output f(x) of the approximation network) with respect to

 f
^
, conditional to x, can be defined by

 K
f
^(f |x) = min { |w |: w ∈{0,1}* and f

^
(w,x)=f(x)} descriptional complexity (1.4)

and K
f
^(f |x) becomes infinity if there are no such w. The set of weight bits w of the

network containing overall |w | bits can be seen as the necessary information on which

the output f
^
(w,x) is based: Different information w will result in different

approximations. In contrast to computer programs which produce binary strings f on

the input of binary strings x, the neural program is not able to approximate the wanted

The complexity of neural nets - 7 -

output f(x) always exactly - generally there is a finite error depending on the

number of bits for the weights used. Thus, we can define the error-bounded

descriptional complexity K
f
^
,ε by

K
f
^
,ε(f |x) = min { |w|:w ∈{0,1}* and |f

^
(w,x)−f(x)|<ε} (1.5)

where the minimum is taken again over the sum of the number of bits of all the

weights in the network at all possible assignment of bits to the weights. For the whole

interval, the number

|w | = max K
f
^
,ε(f |x) (1.6)

 x ∈C

is the minimal number of bits in the network necessary to guarantee a maximal

approximation error of δ<ε for the whole input interval. Our main task of computing

the descriptional complexity for a concrete neural network consists of computing just

this number: the minimal amount of information to describe the state of the network.

The basic idea behind this is not new. The problem of encoding an information

source with the minimal number of bits without exceeding a certain error or fidelity

criterion was first introduced by Shannon and Weaver, 1949 and is known as the

rate-distortion problem, see e.g. Gallager, 1968.

Let us now consider another connection to a neighbour research field. Each

number of bits for the weights in the network architecture f
^
 results in a different

approximation function f
^
(w). For a fixed number |w | of bits only a fixed number of

functions f
^
(w) exists. This number is the number of possible "neural programs" and,

for a certain distribution of the bits to the weights, is equal to the number of possible

states of the set w of all bits. If we further restrict the class {f
^
(w)} by a certain error

constraint, the logarithm to base 2 of the number N
f
 of such functions is the number

|w | of bits:

Hf̂ ,ε = log2 Nf (1.7)

Therefore, our problem of error-constraint minimization of Isys becomes the problem

of the minimization of the number of elements in the ε-cover of the funct i onal class. The

logarithm to base 2 of this number was termed "ε-Entropy" by Kolmogorov and

Tihomirov, 1961. For neural networks, there does not exist much literature on this

subject. For binary networks Williamson, 1991 computed some lower and upper

limits of the ε-Entropy; the determination of the ε-Entropy for a feed-forward neural

network is still missing.

In this paper, we do not only determine I
sys

, the minimal number of bits for a

given maximal approximation error, for a fixed assignment of bits to weights as it is

necessary to determine the ε-Entropy, but we also change the assignment in order to

minimize further the approximation error by the means of the principle of optimal

information distribution.

2 Optimal information distribution

As we know, the task of computing the error-bounded description complexity for

approximation networks, i.e. the system information I
sys

 when a certain error is fixed,

is equivalent to the task of computing the minimal error when a certain I
sys

 is given.

When we have different weights w
i
, W

j
, t

i
, T, ... with different resolutions (number of

bits per weight) in the network, the question becomes : what is the best choice for the

parameters m and I
w
, ... to minimize the approximation error δ

f
, using a fixed amount

of system information I
sys

 ?

The solution to this question is provided by the approach of an optimal

information distribution of the neural network parameters. For this purpose let us

denote the parameters m, I
w
, ... as general system parameters c

1
, ..., c

k
.

The complexity of neural nets - 8 -

2.1 The principle of optimal information distribution

Let us first derive the conditions for the optimal system parameters by some plausible

considerations, presented in Brause, 1989, which should give a feeling for the subject

and an insight into the mechanism involved. The rigorous, conventional mathematical

approach will be covered by the section 2.2 afterwards.

Assume on the one hand that we transfer a fixed, small amount of information

from one parameter to another (e.g. more neurons and less bits per weight) and we

will find the approximation error decreased. In this case the information distribution

induced by the parameter values of c
1
, ..., c

k
 was not optimal; the new one is better.

Let us assume that on the other hand we find that the error δ
f
 has increased, then the

information distribution is not optimal, too; by making the inverse transfer we can

also decrease δ
f
. All subsequent changes in a non-optimal information distribution

will further reduce the error until we reach a minimum. Thus, in a restricted system

we have at least one local minimum of error. This extremum can be characterized by

the following principle:

In an optimal information distribution a small (virtual) change in the

distribution (a change in c
1
, ..., c

k
) neither increases nor decreases

the performance error δf.

A small increment of additional information ∆I
sys

 in the system will produce a change

∆δ
f
 in the maximal output error

 k
∆δ

f
 = ∆I

sys
 ∂ δ

f
 = ∆I

sys
 Σ ∂ δ

f
(c

1
, ...,c

k
) ∂c

i
(2.1)

 ∂I
sys

 i=1 ∂c
i

 ∂I
sys

Each term in the sum of equation (2.4) represents an information contribution of a

system parameter when we increase the overall system information I
sys

. According to

the principle above, an optimal distribution is given when all terms in the sum i.e. all

information contributions of the system parameters are equal.

The complexity of neural nets - 9 -

 ∂δ
f
 ∂c

1
 = ... = ∂δ

f
 ∂c

k
 (2.2)

 ∂c
1
 ∂I

sys
 ∂c

k
 ∂I

sys

The k independent terms gives us (k-1) equations for k variables c
1
, ..., c

k
, leaving us

with a degree of freedom of one. So, choosing the amount of available information

storage I
sys

(c
1
, ...,c

k
)=I

0
, the parameters c

1
, ..., c

k
 are fixed and the smallest error δf for

the particular application will result. On the other hand, for a certain maximal error a

certain amount of network information is necessary.

2.2 Optimal system parameters

Now we want to compare the principle above to a more conventional mathematical

approach.

The maximal error δ
f
 is a multivariate function δ

f
(c

1
,...,c

k
). We will look for the

minimal error of the system using only a certain amount of system information and

search an optimal parameter tuple (c
1
*,...,c

k
*) such that

δ
f
(c

1
*,...,c

k
*) = min δ

f
(c

1
,...,c

k
) (2.3)

 c
1
,...,c

k

which is accompanied by the restriction that the whole information I
sys

 in the system

should not be changed during the maximization process

I
sys

(c
1
,...,c

k
) = I

0
 = const (2.4)

By these two conditions the relative minimum (2.3) of the multivariate function δ
f
 is

searched under the restriction of (2.4). The standard method to get the local extrema

of a constrained function is the method of Lagrange multipliers. For this purpose let

us define the differentiable functions

The complexity of neural nets - 10 -

The complexity of neural nets - 11 -

L(c
1
,...,c

k
,λ) := δ

f
(c

1
,...,c

k
) + λI(c

1
,...,c

k
) (2.5)

with I(c
1
,...,c

k
) := I

sys
(c

1
,...,c

k
) - I

0
 = 0

Since the function L includes the restrictions, the necessary conditions for a relative

extremum of the function gives us the necessary conditions for optimal values of the

system parameters

 ∂ L(c
1
*) = 0, . . ., ∂ L(c

k
) = 0, ∂ L(λ) = 0 (2.6)

 ∂c
1

 ∂c
k

 ∂λ

The conditions above transform to the equations

 ∂ δ
f
(c

1
*) + λ ∂ I(c

1
*) = 0, . . ., ∂ δ

f
(c

k
*) + λ ∂ I(c

k
*) = 0 (2.7a)

 ∂c
1

 ∂ c
1

 ∂c
k

 ∂ c
k

I(c
1
*,...,c

k
*) = 0 (2.7b)

Let us assume that the function I(c
1
,...,c

k
) is invertible for each system parameter.

Then we know that

 ∂ I(c
i
) = ∂ I

sys
(c

i
) = ∂ c

i
 -1 (2.8)

 ∂ c
i
 ∂ c

i
 [∂I

sys
(c

i
)]

and the conditions (2.11) become

 ∂ δ
f
(c

1
*) ∂c

1
 = - λ = . . . = ∂ δ

f
(c

k
*) ∂c

k
 (2.9a)

 ∂ c
1

 ∂I
sys

 ∂ c
k

 ∂I
sys

I
sys

(c
1
*,...,c

k
*) = I

0
(2.9b)

The equation (2.9a) says that for the conditions of an optimal information distribution

all the terms in (2.9a) should be equal: This is the principle of optimal information

distribution as it is stated above in section 2.1 and expressed in equation (2.2). The

last condition (2.9b) is just our well-known restriction (2.4).

The complexity of neural nets - 12 -

It is well known that the mechanism of Lagrangian multipliers does not provide

a general solution, what kind of extremum we have; the decision whether c* is a

relative maximum, minimum or a saddle point must be decided according to the

application problem. For our case, the decision is clear: According to section (2.1)

there exists at least one local minimum. Since we have only one extremum in every

application example of section 3, these extrema must be minima.

3 Application examples

In this section first we want to demonstrate the procedure above by a very simple

example: the approximation of a quadratic form by a polyline or linear splines.

Throughout in this example, all design decisions (choice of value ranges etc.) are

taken for demonstration purposes only; the whole example is simple enough to be

verified analytically by the interested reader.

The section afterwards is intended to be more realistic, but is also more

complicated: Here we show the use of the information distribution principle for the

application example of a robot control algorithm which uses a non-linear, learned

mapping. Since the computations are quite complex, they are given only as an

overview. The more interested reader is referred to Brause (1989).

Let us now regard the simplified example.

3.1 The approximation of a simple non-linear function

Let us consider the simple non-linear function f(x) = ax2 + b. The approximation of

this function can be accomplished by a network with one input x shown in figure 3.1.

Fig. 3.1 The network for approximating f(x) = ax2 + b and the unit output function

The complexity of neural nets - 13 -

Another version of the quadratic function is the logistic function x(t+1)= f(x(t)) :=

ax(t)(1-x(t)) = ax(t)-ax(t)2 which yields deterministic chaotic behavour in the interval

[0,1] for some values of the parameter a, see e.g. Baker and Gollub, 1990. This system

can be approximated by the network of figure 3.1, using an additional, direct input

W x for the second layer to model the linear term ax of the logistic function. The

learning of the weights and thresholds by the Backpropagation-Algorithm was

demonstrated by Lapedes and Farber, 1987.

Let us return to our example of the quadratic function f(x) = ax2 + b. Each

neuron of the network of figure 3.1 has the output function y
i
 = S(z

i
) with the

activation function (potential) z
i

z
i
 = Σ

j
 w

ij
 x

j
 (3.1)

which becomes for the first layer

z
i
 = w

i
 x + t

i
 with the threshold t

i
(3.2)

and for the second layer

f
^
(x) = f

^
(x,W,T,w,t) = Σ

i
 W

i
 S(z

i
) + T (3.3)

with the weight tuples w=(w
1
,..,w

m
) and thresholds t=(t

1
,..,t

m
) for the first layer and

W=(W
1
,..,W

m
) and threshold T for the second layer. Let us assume that we use a

simple limited linear output function as squashing function

 1 1 < z
iS(z

i
) = { z

i
0 <z

i
 < 1 (3.4)

 0 z
i
 < 0

The definition (3.4) satisfy the conditions S(∞)=1, S(- ∞)=0 of Hornik et. al., 1989,

and is shown in figure 3.1 on the right hand side. The choice of a linear output

function is not only motivated by its analytical simplicity, but also by fact that it can

be easily implemented by an ordinary linear electronic amplifier with output signal

limits.

Let us assume that all the weights have converged by a proper algorithm for an

The complexity of neural nets - 14 -

approximation of the non-linear function by linear splines. If the linear interval 0<z
i
<1

of each neuron is identical to the others, the superposition will yield again only a line,

resulting in a bad approximation of a parabola by one line. To obtain as many

approximating lines as possible, the algorithm has to make all intervals different.

Since the output of each neuron is only linear in x when z
i
 ∈[0,1] and otherwise it is

constant 0 or 1, it is a good choice for the approximation to devide the whole input

interval [X
0
,X

1
] by the m neurons of the first layer into m equal (see appendix A1)

intervals ∆x= [x
i
-∆x/2, x

i
+∆x/2] with x

i
=X

0
+i∆x-∆x/2. The segmented normalized

variable z
i
 ∈[0,1] is 1/2 for x

i
.

In the second layer the output z
i
 becomes weighted by the weight W

i
. Together

with an offset of the previous intervals it represents the linear part of the

approximation function f
^
(x) in the interval [x

i
-∆x/2, x

i
+∆x/2]:

m

 k-1

f
^
(x) = Σ W

i
 S(z

i
) + T = Σ W

i
 + T + W

k
 S(z

k
) (3.5)

i=1 i=1

 offset linear part

The resulting approximation is shown in figure 3.2. The corresponding values for w
i
,

t
i
, W

i
 and T can be easily calculated, see Brause, 1991.

From the conditions of (3.4) we can conclude that the value of z
i
 at xi-∆x/2 is zero and

at xi+∆x/2 it is one.

Therefore, by (3.2) we get

w
i
 = 1/∆x = m / (X

1
-X

0
) (3.6a)

and t
i
 = - w

i
 (x

i
-∆x/2) = X

0
/∆x +1-i = - mx

i
 / (X

1
-X

0
) + 1/2 (3.6b)

Let us choose W
i
 such that in each segment the spline is parallel to the tangent of f(x)

in x
i

 ∂f(x)|xi

 = ∂(ax2 + b)|xi
 = 2ax

i
 = ∆y/∆x

 ∂x ∂x

Since the output S(z) is normalized between 0 and 1, we have to choose the weights

Fig. 3.2 The non-linear function and its approximation

Therefore, the weights become

W
i
 := ∆y/1 = 2ax

i
 ∆x (3.6c)

Then the basic threshold T becomes the offset of the approximation at X
0
, see figure

3.2. Using (A.1) we get

T = f(X
0
) -δlin = aX

0
2 + b - a/2 (∆x/2)2 (3.6d)

Example:

For a net of m:=5 neurons we get for a=1, b=0, X
0
=-1, X

1
=1 with ∆x = 0.4 five

non-overlapping intervals [-1,-.6], [-.6,-.2], [-.2,+.2], [+.2,+.6], [+.6,+1] with

x
i
= {-.8,-.4, 0, +.4, +.8}, W

i
={-.64, -.32, 0, +.32, +.64},

 and w
i
 = 2.5, t

i
= {+2.5, +1.5, +0.5, -0.5, -1.5}, T= 0.98.

The maximal linear approximation error δlin=0.02 has the same order as in the

simulation results of Lapedes et al. ,1987.

Fig. 3.3 The individual neural approximations for a=1, b=0, m=5

In figure 3.3 the superposition of the approximating function by the

individual neural output S
i
(x) is shown. Each neuron has its linear output

restricted to its input interval, otherwise it remains constant.

Due to figure 3.2 (and figure A.1) we might suppose that the error of the

approximation does not remain constant, but has minimal and maximal values.

This is confirmed in figure 3.4 for the example of 5 neurons.

The complexity of neural nets - 15 -

Fig. 3.4 The linear approximation error in the interval x ∈[-1,+1] for m=5 neurons

In some control applications we are not interested in the mean error over the interval

(which is approximately zero in the example above), but in the maximal error that can

occur. Thus, we do not aim to minimize neither the average error nor the mean

squared error of the approximation, but to minimize the maximal absolute error of

Eq.(1.1), i.e. the maximal squared error. As the error of the linear approximation we

consider therefore the maximal linear approximation error δlin which is evaluated in

appendix A to

δlin = a/2(∆x/2)2 (A.1)

This reflects the error due to the finite number of neurons. Let us now consider the

other source of the approximation error, the finite information in the weights and

thresholds, i.e. the error due to the finite resolutions of the system variables.

3.2 The resolution error

To calculate the resolution error due to the number of bits with (1.3) for w
i
, t

i
, W

i
 and

T we first have to define the range V
w
,V

t
,V

W
 and V

T
 of the variables, see Brause

(1991). The maximal resolution error δ
s
 of a variable s in one state is just the half of

the resolution increment d
s
 in equation (1.3)

δ
s
 = d

s
/2 = V

s
/2 2-Is (3.8)

where I
s
 denotes the number of bits (the information) associated with the variable s. In

the present approximation function example our information distribution system

parameters c
1
, ...,c

k
 are represented by the number of bits per variable I

w
,I

t
,I

W
 and I

T

The complexity of neural nets - 16 -

The complexity of neural nets - 17 -

and the number m of neurons in the first layer. In appendix B the error δres due to the

finite resolutions I
w
,I

t
,I

W
, I

T
 and m is evaluated to

δres= 2aX
1
 ∆x [δw X

1
+δt] + mδW + δT (B.2)

3.3 The optimal information distribution

As we have already mentioned, we are not interested in minimizing the mean squared

error. Besides, since we do not assume anything about the input probability

distribution p(x), we can not compute the mean squared error.

Instead, as a performance measure of the approximation network let us compute

the maximal absolute error which can occur. The maximal approximation error δ
f
 is

given by the worst case condition that the maximal linear approximation error δlin and

the maximal resolution error δres do not compensate each other but adding up to

δ
f
 = δlin + δres (3.9)

The whole information I
sys

 contained in the network is the sum of the information

m(I
w
+I

t
) of the m weights and thresholds in the first layer and the information mI

W
+I

T

of the m weights and the threshold in the second layer

I
sys

 = m(I
w
+I

t
+I

W
) + I

T
(3.10)

When we add some information to the system by augmenting the number m of

neurons, the resulting approximation will be better and, naturally, the approximation

error will diminish. When we add some neurons, but reduce the information in the

weights and threshold, such as to conserve the overall system information, the result is

The complexity of neural nets - 18 -

not so clear. In figure 3.5 the approximation error is shown on a logarithmic scale

for different values of m and constant system information I
sys

=708.45 bits; the number

of bits for all other variables are the same I
w
=I

t
=I

W
= I

T
 and can be directly computed

by equation (3.10).

Fig. 3.5 The approximation error at constant system information (a=1, b=0)

The minimal error of δ
f
=2.28x10-3 is at m*=16.2 neurons and I

T
=14.2 bits, about 3%

worse than with the optimal system parameters (see example ahead). To get the

optimal parameters, we just have to compute the conditions for the multivariate

minimum of δ
f
(m,I

w
,I

t
,I

W
,I

T
) which we have already solved in section 2.1 and 2.2.

The condition (2.2) for an optimal information distribution becomes

 ∂ (δlin + δres) ∂ I
sys

 -1 = ... = ∂ (δlin + δres) ∂I
sys

 -1 (3.11)
 ∂m (∂m) ∂I

T
 (∂I

T
)

with the derivatives of (3.10)

 ∂I
sys

 = I
w
+I

t
+I

W
 ∂I

sys
 = m = ∂I

sys
 = ∂I

sys
 ∂I

sys
 = 1 (3.12)

 ∂m ∂I
w
 ∂I

t
 ∂I

W
 ∂I

T

The 5 terms of (3.11) should be are all equal, giving us 4 equations with 5 variables.

In Brause, 1991 this is evaluated giving us the three equations

I
t
 = I

w
 + C with C:= log

2
((X

1
-X

0
)/X

1
) (3.13)

I
W

 = I
t
 + C (3.14)

I
T
 = I

W
 + log

2
(g

T
(m)/2) -log

2
((X

1
-X

0
)2/m) (3.15)

and the equation for the number of neurons

m = h(m,I
T
)1/3 (3.16)

This we can use for numerically given I
T
 as an iteration formula at the (s+1)-th

iteration for m:

m(s+1) = h(m(s),I
T
)1/3 (3.17)

Since the derivative of h(m)1/3 is lower 1, the convergence condition is satisfied and

the iteration converges.

Example
Let us choose an information of 16 bit in the threshold T. Therefore, in the

simple case of X
0
=-1, X

1
=+1, a=1, b=0 we have with I

T
 = 16 bit the optimal

configuration at m=16.54 neurons, I
W

 =14.95 bit, I
t
=I

W
-C =13.95 bit and

I
w
=I

t
-C=12.95 bit. The overall information in the network with Eq. (3.10) is

then I
sys

 = 708.45 bits (the same I
sys

 as in the example above) and the overall

approximation error is δ
f
 = 2.213 ×10-3 with the pure linear approximation error

part of δlin=1.83 ×10-3. If we augment the information capacity of the system and

use I
T
=32 Bit, the overall error will diminish to δ

f
 =1.847 ×10-6 when we use the

optimal system parameters.

The example of the approximation of a simple quadratic function is quite

instructive to evaluate, but has the disadvantage that it is not very common in real

world applications. The question is, whether the proposed principle of information

distribution works in a more realistic environment.

3.4 The approximation of robot manipulator control

For this purpose let us consider the more complicated task of robot manipulator

position control. The kinematic control computes the Cartesian position x of the end

point of a robot manipulator, composed of several segments and joints, by a

straightforward matrix multiplication (homogeneous transformation) between all

segment-matrices when the joint coordinates (joint angles) θ
i
 are given. The inverse

transformation, the inverse kinematics, does the inverse task: when the absolute

The complexity of neural nets - 19 -

The complexity of neural nets - 20 -

Cartesian coordinates x of the end point (e.g. the palm of the robot hand) is given, it

computes the appropriate joint coordinate θ
i
 for each segment.

The inverse kinematic is a quite complicated function and not easy to find.

When the rotational axes of the joints are oriented not in parallel or orthogonal, it is

very hard or quite impossible to find an analytical solution. This fact prohibits the

exploration of user-defined robot architectures and limits the adaption of robot

architectures to the user’s needs.

A very promising approach is to learn the non-linear mapping of inverse

kinematic. One of the existing approaches by neural network systems is the use of

Kohonen’s, 1984 Topology-conserving maps by Ritter, Martinetz and Schulten, 1989.

Since the mapping is very coarse for a small amount of neurons, they additionally use

a linear approximation with learned coefficients. In figure 3.6 a neural network for the

robot control is shown which models the main steps of the algorithm.

Fig. 3.6 An approximator network for robot control

The whole workspace {x} of the robot is devided into m segments, each one defined

by a wk, the center of the workspace segment k. Instead of one exclusively activated

neuron c in the Kohonen net which has the smallest distance |x-wc| there is a cluster of

three neurons which becomes active when their segment of the workspace is

concerned. This cluster have to generate the 3-dim. difference vector x-wc for the

linear approximation in the workspace segment by the second layer. By the learning

rules, the constant input unit of each cluster (black dot in fig.3.6) generates a constant

term Θc=(θ
1

c,θ
2

c,θ
3

c) which is the vector of the angles corresponding to wc.

The complexity of neural nets - 21 -

Thus, we have a two-layer approximation network again. Since the performance

of this approach heavily depends on the resolution of the neural net and the resolution

of the internal representation, we have to apply our methods of section 2 to prevent an

exhaustive need for storage. Instead of a one-dimensional problem with m neurons the

number of neurons grow by m=n3 having n neurons per dimension. Here we have to

balance the number n of storage cells (number of neurons) against the bits per cell

(resolutions I
w
, Iθ, I

A
 of the weights and coefficients). The choice for the system

parameters n, I
w
, Iθ, I

A
 can be done by the information distribution principle

introduced above most efficiently.

For this purpose, let us assume that the stochastic approximation process of the

Kohonen mapping has become stable and the mapping has perfectly converged.

Nevertheless, there remains an error due to the discrete approximation of the

non-linear function. For the example of the commonly used PUMA robot (figure 3.7)

this was evaluated in Brause, 1989, based on the strategy for optimal storage

Fig. 3.7 The PUMA robot (after Fu, Gonzales and Lee, 1987)

distribution. The main results are given below.

Let us first evaluate the maximal error δlin due to the linear approximation. Since

we have only rotational axes in the system, one of the most difficult and important

tasks for the manipulator is a linear, straight movement as it is often required in

applications. Therefore, we consider the error on a straight line through the whole

cubic work space of the manipulator. This resembles a cut through the error-weighted

workspace. The numerically computed approximation error is shown in figure 3.8(a)

on the left hand side. The parameter of the approximation error is n, the number of

neurons in one dimension. Since the robot works in three dimensions,

The complexity of neural nets - 22 -

 we have m=n3 neurons in the whole system.

Interestingly, the lines of the different parameter values n=10, 100, 1000 seem to

be shifted vertically with the same offset. A numerical evaluation of the error on the

positioning point with the maximal error (approximately at the third path point) shows

us that this is right; in figure 3.8(b) on the right hand side the logarithm of the joint

error is drawn versus the number n of the neurons in logarithmic scale. This gives us

the analytical expression of δlin=cnb as a good approximation with numerical obtained

values for c and b. This coincidences well with the analytical expression (A.2) for the

linear approximation error of the example of a quadratic function.

(a) (b)

Fig. 3.8 (a) The absolute positioning error and (b) the joint error
as a function of the number of neurons per dimension

The resolution error δres of the linear approximation scheme can be easily calculated

by the same ideas as for equation (B.2).

The maximal error is, again, the superposition of the error of the linear approximation

and the resolution error

δ
f
 = |δlin + δres|

with δlin and δres denoting the error vectors. Since the form of both errors are now

analytically known, the conditions for the optimal information distribution of equation

(2.2) can be calculated, using the derivatives of δ
f
, i.e. of δlin and of δres. Of the

resulting three conditions for four parameters all can analytically be solved except the

condition for m, which was numerically iteratively approximated. The optimal system

parameter values for a fixed amount of system information are shown in figure 3.9(a)

on the left hand side.

(a) (b)

The complexity of neural nets - 23 -

Fig. 3.9 (a)The optimal parameter configurations and (b) the corresponding
Cartesian error for minimal information storage

Now we have an optimal configuration of all system parameters yielding the minimal

possible information storage amount for a given Cartesian error. The Cartesian error

as a function of this optimal storage is shown in figure 3.9(b) on the right hand side

for the situation when all weights and thresholds are forced to have the same

resolution (number of bits per variable) but optimal n and, furthermore, when they all

have different, optimal resolutions.

For a reasonable error of 0.2 mm, a value which is in the range of normal

mechanical inaccuracy of the PUMA manipulator, the necessary 1.9 MB of storage

memory is contained in m=39.63 neurons and a constant resolution of I
w
=16.4 Bits for

all weights. The optimal configuration with different weight resolutions gives only a

18% smaller error, and therefore do not encourage the use of multiplication operations

with variable accuracy which would be necessary in this case.

It should be noted that figure 3.9 assumes real-valued number of bits and

neurons. Certainly, in real applications we must use integer values (truncated or

rounded) for all parameters which will result in a slightly different optimum and
increased approximation error. The best selection will choose of the possible integer

tupels (I
w
,m*) the one with the smallest error δ

f
.

Experiments with a computer-simulated neural network controlling a real

PUMA-like robot confirm the considerations above .

4 Conclusion

The error-bounded descriptional complexity of approximator networks is determined

by the principle of optimal information distribution. This is a criterium for the

efficient use of the different information storage resources in a given network.

The complexity of neural nets - 24 -

Furthermore, it can be used as a tool to balance the system parameters and to obtain

the optimal network parameter configuration according to the minimal usable storage

amount for a maximal error which is given.

In this paper two examples are presented. First, a simple non-linear function

approximation is evaluated, the conditions for optimal system configuration are stated,

their solutions are analytically computed and their nature is explained. Second, the

more complicated function of the inverse kinematic of a PUMA robot is considered

and the results for optimal system parameters, which are partially obtained by

numerical iterative approximations, are shown.

The benefits of the proposed method are not limited to real networks, but apply

also to all computer simulations. Here we have a tool to tailor the storage

requirements according to the application needs in an optimal way.

References

Baker, Gregory and Gollub, Jerry (1990). Chaotic dynamics: an introduction

Cambridge University Press.

Brause, R. (1989). Performance and Storage Requirements of Topology-Conserving

Maps for Robot Manipulator Control. Internal Report 5/89, Fachbereich Informatik,

University of Frankfurt, FRG.

Brause, R. (1991). Approximator Networks and the Principle of Optimal Information

The complexity of neural nets - 25 -

Distribution. Internal Report 1/91, Fachbereich Informatik, University of Frankfurt,

FRG,

and Proc. ICANN-91 Helsinki, Elsevier Publ. Comp., North-Holland.

Gallager, R. (1968). Information Theory and Reliable Communication.

New York, London, Sydney, Toronto: John Wiley and sons, inc.

Girosi, F. Poggio,T. (1990). Networks and the Best Approximation Property.

Biolog. Cybern., 63,169-176.

Hornik, K., Stinchcomb, M., White,H. (1989). Multilayer Feedforward Networks are

Universal Approximators, Neural Networks, 2, 359-366.

and

Stinchcomb, M., White,H. (1989). Universal approximation using feedforward

networks with non-sigmoid hidden layer activation functions. Proc. Int. Joint Conf.

Neural Networks, Washington DC, pp. I/607-611

Fu, K.S., Gonzales,R.C., and Lee,C.S. (1987). Robotics, McGraw Hill Book Comp.

Kohonen,T.(1984). Self-Organisation and Associative Memory.

Berlin, New York, Tokyo: Springer Verlag.

Kolmogorov, A.N., Tihomirov,V.M. (1959). ε-Entropy and ε-Capacity of Sets in

Functional Spaces, Uspehi Mat (N.S.), 14, 3-86. In: Am. Math. Soc. Transl.(1961),

Series 2, 17, 277-364.

Lapedes,A., Farber,R. (1987). Nonlinear Signal Processing using Neural Networks:

The complexity of neural nets - 26 -

Prediction and System Modelling; Los A lamos preprint LA-UR-87-2662

Li,Ming, and Vitanyi,Paul (1990). Kolmogorov Complexity and its Applications. In:

J. van Leeuwen (Ed.) Handbook of Theoretical Computer Science, Elsevier Sc.

Publ.

Ritter,H., Martinetz,T., Schulten,K. (1989). Topology-Conserving Maps for Learning

Visuomotor-Coordination, Neural Networks, 2/3, 159-167. New York: Pergamon

Press.

Shannon, C.E., Weaver ,W. (1949). The Mathematical Theory of Information,

Urbana: University of Illinois Press.

Williams, Robert (1991). ε-Entropy and the Complexity of Feedforward Neural

Networks. In R.Lippmann, J.Moody, D. Touretzky (Eds.): Advances in Neural

Information Processing Systems 3. San Mateo, CA: Morgan Kaufmann Publ.

The complexity of neural nets - 27 -

Appendix A: The linear approximation error

The non-linear function in the intervall [x-∆x/2, x+∆x/2] is

f(x) = ax2 + b

and the linear approximation by the neural network is

f
^
(x) = αx + β with α:= 2ax

Fig. A.1 The error of the linear approximation

The approximation error δ
l
 is (see figures 3 and A.1 above)

δ
l
(x) = f(x) - f

^
(x) = ax2 + b - 2axx - β = b - β- ax2 =: d

δ
l
(x

i
+∆x/2) = f(x

i
+∆x/2) - f

^
(x

i
+∆x/2) = d + a(∆x/2)2

δ
l
(x

i
- ∆x/2) = f(x

i
- ∆x/2) - f

^
(x

i
- ∆x/2) = d + a(∆x/2)2

The errors at the borders are equal. The maximal error max(|δ
l
(x

i
)|,|δ

l
(x

i
+∆x/2)|) is minimal when

the errors are equal

|δ
l
(x

i
)| = |δ

l
(x

i
+∆x/2)| or |d| = |d + a(∆x/2)2| (A.0)

This is given when

d = - a/2(∆x/2)2

Therefore, the maximal linear error δlin depends not on the value of x
i
, it is the same in the whole

interval

δlin = a/2(∆x/2)2 (A.1)

Since we have ∆x= (X
1
-X

0
)/m we get

δlin = m-2a(X
1
-X

0
)2/8 = c mb (A.2)

with c = a(X
1
-X

0
)2/8) and b = -2

The complexity of neural nets - 28 -

Note: For this approximation problem, the maximal approximation error is minimized when

we divide the whole interval [X
0
,X

1
] into m equal segments. This can easily be proven

by the following:

Let us regard the interval segment which has the maximal approximation error. According to

equations (A.0), the maximal linear error depends not on the value of x
i
, the middle point of the

i-th interval segment, but only on the length ∆x
i
 of the segment. Thus, all the segments can be

sorted into a descending order of both their length and their associated error.

Now, if we reduce the segment length ∆x
i
 and increase the length ∆x

k
 of the next

segment in the order, the maximal error diminishs until it becomes equal to the error of the next

segment. Then both segment lengths and errors are equal. A further reduction of ∆x
i
 alone will not

change the maximal error, we have to reduce both the segment lengths ∆x
i
 and ∆x

k
, and have to

increase the length of the third segment in the order until all three errors and segment lengths

become equal.

Let us assume that this is true for the n first segments in the initial order. Then the idea

above is also valid for the n+1-th reduction step to the n+1-th segment: by complete induction all

segments have to be equal for the minimum of the maximal error, given in equation (A.1).

The complexity of neural nets - 29 -

Appendix B: The resolution error

For the computation of the resolution error let us assume that in all weights and thresholds the

maximal increment error δ has occurred. The resolution and therefore the maximal increment

error in one variable should be independent of its index. Then the approximating function

becomes with (3.2) and (3.3)

f
^
(x,δ) = Σ

i
 (W

i
 +δW) S(z

i
+δz) + T+δT (B.1)

= Σ
i
 W

i
 S(z

i
+δz) + T + Σ

i
 δW S(z

i
+δz) +δT

Because the intervalls are exclusive, for the k-th intervall we have to regard only the influence of

one neuron of the first layer; for i<k we have S(z
i
) = S(z

i
+δz) = 1 and for i>k we have S(z

i
+δz)=0.

f
^
(x,δ) = (Σ

i
k-1W

i
) + W

k
 S(z

k
+δz)+ T + (Σ

i
k-1δW) + δW S(z

k
+δz) +δT

 = f
^
(x)

+

W

k
 δz + (k-1)δW + δW S(z

k
+δz) +δT

The maximal error δres is encountered at max(x) = X
1
 on the boarder of the intervall [X

0
,X

1
].

The contribution of the term δWS(.) becomes maximal δW when S(.) = 1. Therefore, we have

f
^
(X

1
,δ) = f

^
(X

1
) + (m-1)δW +

W

m
δz

m
 + δW S(z

m
+δz) +δT

 = f
^
(X

1
) + mδW + W

m
δz +δT

and so with δz=δwx
m

+δt we get

δres = f
^
(X

1
,δ) - f

^
(X

1
)= mδW + W

m
 (δw X

1
+δt) + δT

 With (3.6c) we get

δres = 2aX
1
 ∆x [δw X

1
+δt] + mδW + δT (B.2)

��� �����	�	
���������	���	���

� �
� �

� �

� �
� �

� �
�
�

���
�

� � �� � �

!#" $ %'& (�) *,+ - . / 0 1 243 5 6 7 1 2 8 / . / 9 9 2 + : 6 ;	/) 6 + 5	5 1) *,+ 2 < =

>
? @
A B

A C

DE F G H
III

J
K L M

K

N O P Q

RS
T#U V W X W Y Z [\#]4^ _,` _ a b,c d egf c d4[h h d c i j k	[a j ` lga ^ _,f m ` n a j c `	f Z i \#op[i q rts u

v w xzy { |g} ~ �	~ y | �p} ~ � | � �,� | � � � }4� � ~ y4� � y � � y4� � � � y ~ � ��� v � x � ���z� � �p� � ��� | | �'~ y�� � y ~ � � ~ | �,y { |g� � � � ~ y ~ � � �g� v � � � �'�
� � �t� � � � �z� �

� � ¡ ¢
£ ¤ ¥
£ ¤ ¦
£ ¤ §
£ ¤ ¨
£ ¤ ©
£ ¤ ª
£ ¤ «
£ ¤ ¬
£ ¤ ¢
£ ¤ £
 ¢ £ ¤ ¦ £ ¤ ¨ £ ¤ ª £ ¤ ¬ £ ¤ £ £ ¤ ¬ £ ¤ ª £ ¤ ¨ £ ¤ ¦ ¢ ¤ £

®#¯ ° ±#² ± ³ ´4µ ¶g· ¸ · ¹ º » · ¶ ¼ ½,¾ ¿ · À Á » ¸ ·Â¾ Ã Ä Åz¼ · ÆÂ» Á ÇÈ¼ É É ½ ¸ Ä » Ê	¼ Á » ¸ ·ÂË Ìpº » · ¶ ¼ ½�Ç É º » · ¶ Ç Í#Á µ ¶	É ¸ º Ì Î ¸ ·�¸ ¾zÁ µ ¶tÇ ¿ É ¶ ½ É ¸ Ç » Á » ¸ ·�¸ ¾
Ï Ð Ñ,Ò Ó Ô Ñ Õ Ö4Ô Ñ × Ö Ø Ô Õ Ò Ø × Ï Ù × Ï Ú Û4Ð Ñ,Ü Ø Ï Ï Ñ Ü�Ý Ñ Ö Ï Ó Þ Õ Ò Ò Ó Ô Ñ ß4Ü Ñ Ô Ø Ï Ñ,Ï Ð Ñ,Ó Ô Ù × Ï Ó Ô Ï Ñ Ö Ý Õ Ò à Ø Ö Ü Ñ Ö ß4á Ø Ö4Ñ Õ Þ Ð	Ô Ñ × Ö Ø Ô'Ú

� �

	
 � �
� � � � � �

� � � � � �
� � � � � �

� � � � � �
� � � � � �

��� � � � � � ��� ��� � � ! � " # $ � � " % # $ # & & % ' (�)*# + � ' �*' " + & " + ,�- ' %�# .0/ 1 2 .43 1)*.�5 6 7�89+ � �: ' + + � *$ � � � ,;+ � �:� � & " +4� ,; � ! � � *� �
< = > ? @ A B C <DB E F < G C H ? A I;H J H B E4K�L EM< H > NMB E O @ F�B E F < G C H ? I;F N < G <DB A9HPE < @ G Q EMR�B F NMHP? B E < H G9Q @ F O @ F K;S�N <PR�< B J N F < T
U V W X Y W Z U [\ [Z]DZ ^�_ ` `�Z V \ W V \ U;a X b Z c*X U0_9W Z ` d e Z]4f g Z Y�\ h X*U _ i X9Z ^;b ` _ Y [\ dj\ h X9Z V \ W V \�Y X U W Z] U X9Z ^;\ h X9] X V Y Z] U
k l m:n o p q r m sut m l r p v k w w xup y*r o m�s l k z�p y { |

} ~ } � � � } � � � } � � � } � � � � � � � � � � � � � � � � � � ~ � � �

� � � �
� � � �
� � � �

� � �

� � � � �

� � � � �

��� � ��� � � ��� �P� � � � � � � �*� � � � ¡� � � � � ¢ £ ¤ ¥ ¦ §¡¨ © ªP¦ § ¨ ª « ¬ ® ¯ ° ± ² ³ ´ µ0³ ¶9· ¸ ¹*º*»�¼¾½ ¿ À ¹ ¸ ½ Á Â;ÃuÁ9Ä ¸ ÀMÅ Æ ½ÇÁ ¿ ¿ ´0È É ¿P¿ ¹ ¹ ¸ ¹*Ê Á
º*Æ Ë Ê º*Æ Ì Ê ½*È É ¿�º*Ê Í Í Ì ¿�Æ ½ Í9Æ È È É ¿0Î ¸ ¹ Í ¿ ¹ Á�¸ ·4È É ¿�Ê ½ È ¿ ¹ Ï Æ Ì Á Â

Ð Ñ Ò Ó Ô Õ Ô Ð Ô Ñ Ô Ò Ô Ó Ð Õ Ð Ð Ð Ñ Ð Ò Ð Ó Ö Õ ×

Ø Ù Ú Ù Û Ü Õ Ó Ý Ñ Þ ß à á

â ã ä å æ ç è é ê ë ì í î

ë ì í ï

ë ì í ð

ñ�ò ó ô9õ ô ö ÷�ø ùMú*û ü ý ú*û þjû ÿ ÿ � � ü ý ú*û � ý � � ù � � � � � � � �	�
 � � � � � �� � � � � ��� � �
 � ��� � �
 � � � � � ����� ��� � �
 ��� �� � � !"�#
 �#�
$
 % � � � � � ��� �&� � � $ � �

� � � � � � � � � 	 �
 � � �

 � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � ! !

" # # # # # $
% & '() * + , - . / * - 0 1 0 * 2 3 4 5 6 7 8 9 5 : ; < = >
? @ A B @

C D E F G H I J G K K L M N F O D O P Q Q Q R S T U V W X Y Z [\] Z
^ _ ` a b c d e ` f ` d a g

h i j k i j l m n o p o q o r s
tvu w xzy x { |~} ��� � � � � � � � � � � � � � ��� � � ��� � � ��� � ��� � ��� � ��� � � � � � ��� � � � ��� � � ��� � � � � � ��� ��� � � � � ¡£¢¤� � �¥� � ¦ � � � ��� � � � � � § �

¨ © ª « ¬ ® ¯ ¨ « °�± ² « °�® ²³± ² ¨�´�± µ ¶ · ¸ ª ¨� ¨ ¹ º�¨ ² »½¼ ´�® ² ² ¨ µ ¾ » ¸ ¶ ¨ ¾ ¸ « «¤² ¨ » ´�± µ ¶ ¿£´�® » ÀÁ± ² ¨� ¨ »¤± Â½« ¨ ¸ µ ² ¨ Ã�Ä ± ® ² »¤¸ ² ¹ « ¨ Å Æ Ç Ç È É Ê Æ Ë Ì Í Ë ÎÁÏ Æ³Ï Ð È�Å È Ë Ï È ÇzÆ Ñ£Ï Ð È�Ò�Æ Ç Ó É Ê Ô Å È³É È Î Õ�È Ë Ï Öv×zÌ Ì Í Ï Í Æ Ë Ô Ø Ø Ù Ú¤Ï Ð È³É È Å Æ Ë Ì�Ø Ô Ù È Ç�Í Ë Ï È Ç Ê Æ Ø Ô Ï È É�Ø Í Ë È Ô ÇÛ Ü Ý Þ¤ß à ß á â Ý ß ã ä å¤æ�ä ç ç Ý ß è�é ê�Û Ü ã�â ã ä å ß ã ë�æ�ä Û å Ý ì í î ï

ðvñ ò ó ô ó õ ö¤÷ ø�ù ú�û�ü¥ý þ ÿ þ ��� � � � ø ý�� � � 	�
 � � � � ������� � ��� � � � � � ��� ��� � � !
 "�# � ��$
 %
 # � � � &('��) * �+) �,� - % . � * # #
/# � �
0 1 2 3 4 5 3�6 0 1 3 7+8 9 0 :�0 5�7+8 4 6 3 ;/< =/8>; ? 9 @

� � � � � � �
� � � 	 �
 � � �

 � � � � � �

� � �

� � � �

� � � �

� � � �

� � � �

� � � � �

� � � � � �

�
 � � � � � � � � �

� ! "

$ % & ' () * + ,
- . .

- . / 0
- . / 1
- . / 2

- . / 3
- - . - . . - . . . - # $ % & ' 4 5 6

798 : ; < ; = > ? @9ACB DE? F G H I J K DMLN? O K D G P ? QSR H G P K P H Q P Q TUD O O H OCV J DEK HWK B DEI P Q D ? OC? R R O H X P YS? K P H QSH QS?MI P Q D ? OCR ? K BSK B O H J T BSZEH O [
\] ^ _ ` a \ b c dEeSc eS^Mf c g ^ h i j b kSi _M\ _ ^ f ` al m n j b `9o c i e j ` h h c hCp q `Ej cWj b `Ef i e ` ^ hC^]] h c r i kS^ j i c eS^ \C^Ms q e _ j i c eSc stj b `Ee q k m ` hCc ste ` q h c e \C] ` hCp i kS` e \ i c etuv c j bS^ r ` \C^ h `Ef c g ^ h i j b kSi _ ^ f f wU\ _ ^ f ` p u

� �

� �

� � � � � � 	

� �

� � � � � �� � � � � � �
� � �
� � �
� � �
� � �
� �

! " � # � �$ �
% �
& �
' �
� �
� () () � () � () * () + () � () � � () � �, - . / 0 1 2 3 4 3 5 6 7 4 8 9 3 :

; < < =
> ? @
A B C
A B D @
A B D E
A B D F
A B D G

H I J K C L M N O

P Q R P Q S P Q T P Q U P Q V P Q W R P Q W S P Q W TX Y Z W R [\] ^] O _ ` a b c d e

f g h d i j c d g k l i m g h d
g n i m o p kj c d g k l i m g h d

qsr t u v u w x y zs{}| ~�� � � � ��y � � y � � ~ �}� � �}� | ~�� ~ � ��� � ��� y � y ��~ � ~ � �}��| ~ ��� | ~�y � y � � y � � ~�� � � � ~ ��� � � � � ��y � � � ��� �}� � � ~ ���� � � � � ��� � ¢¡ £ ¤ ¥ � ¦ � §©¨ª� ¡ � £ ¦ � �© ¡ ¡ « ¡¬� �� �©« ® � ¦ ¯�� ¥¦ � ° « ¡ ¯�� � ¦ « �±� ¦ £ � ¡ ¦ � ¤ � ¦ « ��²´³ « ¡µ� � ¶£ � ¯� �� ¯�« ¤ � �·« °¦ � ° « ¡ ¯�� � ¦ « � ¸ � � �� ® ® ¡ « ¹ ¦ ¯�� � ¦ « �º ¡ ¡ « ¡ª« °s� »�«�® « £ £ ¦ � ¥ �¼ « � ° ¦ § ¤ ¡ � � ¦ « � £½� ¡ ¾� ¡ � »��´¦ �´��¥ « § � ¡ ¦ � � ¯�¦ ¼�£ ¼ � ¥ ¿ À�� »�¦ � �Á� ¥ ¥}»� ¦ § � � £�� � Â ¦ � §´� � �£ � ¯� �¡ £ « ¥ ¤ � ¦ « �� � �Á« � �»�¦ � �� ¦ ° ° ¡ � � ¸s« ® � ¦ ¯�� ¥ ¥ Ã´¼ « ¯�® ¤ � �Á¡ £ « ¥ ¤ � ¦ « � £ ²�Ä}� « ® � ¦ ¯�� ¥½� ¤ ¯�� ¡ Å Æ Ç�È É Ê Ë Æ È Ì¾Ë É Ì Ê Í Î Ì¾Ï Ì¾Ï´Ç Ê È Ð Î Ñ Æ È·Æ Ç�Î Ò É´Æ Î Ò É Ë�Ó Ï Ë Ï Ô�É Î É Ë Ì Õ}Ö Æ Ë�Ò Ê × ÉÁÌ Î Æ Ë Ï × ÉÁÌ Ñ Ø É Ì ÙªÎ Ò ÉÚ Û Ü Ü Ý Þ Ý ß à Ý�á Ý â ã�Ý Ý ß·â ä Ýºâ ã�åÁæ ç ç Þ å æ à ä Ý è¾Û è¾Þ Ý é�æ Þ ê æ á ë Ý ì}á í â�Ü å Þ�é�å Ú Ý Þ æ â Ý ìªé�å Þ Ý´Þ Ý æ ë Û è â Û à´Þ Ý î í Û Þ Ý é�Ý ß â è�â ä Ýï ð ñ ñ ò ó ò ô õ ò�õ ö ô�÷ ò�ô ò ø ù ò õ ú ò ï û

ü ü

ý þ ÿ þ
� � � ÿ þ � � � � � ÿ þ

�� � � �

� � � �

� 	
 � 	
 � � � �
� � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �
!

!

�!

"$# % & '(&) *,+ -.- / / 0 /10 2,3 + -.4 5 6 - 7 /17 8 8 / 0 9 5 :;7 3 5 0 6<0 2,7>= ? 7 @ / 7 3 5 A.2 ? 6 A 3 5 0 6CB DE- :;7 / FG3 + 7 3$3 + -.- / / 0 / H10 A A ? /15 6<3 + -.:;5 @ @ 4 -
I J K>I L L M N1O P Q K N Q R,P SCL M NUT J L N Q V I W X

