2 research outputs found

    PSPACE-completeness of the temporal logic of sub-intervals and suffixes

    Get PDF
    In this paper, we prove PSPACE-completeness of the finite satisfiability and model checking problems for the fragment of Halpern and Shoham interval logic with modality 〈E〉, for the “suffix” relation on pairs of intervals, and modality 〈D〉, for the “sub-interval” relation, under the homogeneity assumption. The result significantly improves the EXPSPACE upper bound recently established for the same fragment, and proves the rather surprising fact that the complexity of the considered problems does not change when we add either the modality for suffixes (〈E〉) or, symmetrically, the modality for prefixes (〈B〉) to the logic of sub-intervals (featuring only 〈D〉)

    Complexity analysis of a unifying algorithm for model checking interval temporal logic

    Get PDF
    Model checking (MC) for Halpern and Shoham's interval temporal logic HS has been recently shown to be decidable. An intriguing open question is its exact complexity for full HS: it is at least EXPSPACE-hard, and the only known upper bound, which exploits an abstract representation of Kripke structure paths (descriptor), is non-elementary. In this paper, we provide a uniform framework to MC for full HS and meaningful fragments of it, with a specific type of descriptor for each fragment. Then, we devise a general MC alternating algorithm, parameterized by the descriptor's type, which has a polynomially bounded number of alternations and whose running time is bounded by the length of minimal representatives of descriptors (certificates). We analyze its complexity and give tight bounds on the length of certificates. For two types of descriptor, we obtain exponential upper and lower bounds; for the other ones, we provide non-elementary lower bounds
    corecore