537,517 research outputs found

    Afterthoughts | Complexities of Potency

    Get PDF
    Afterthoughts to themed perspectives on Complexities of Potency

    Limit complexities revisited [once more]

    Get PDF
    The main goal of this article is to put some known results in a common perspective and to simplify their proofs. We start with a simple proof of a result of Vereshchagin saying that lim supnC(xn)\limsup_n C(x|n) equals C0(x)C^{0'}(x). Then we use the same argument to prove similar results for prefix complexity, a priori probability on binary tree, to prove Conidis' theorem about limits of effectively open sets, and also to improve the results of Muchnik about limit frequencies. As a by-product, we get a criterion of 2-randomness proved by Miller: a sequence XX is 2-random if and only if there exists cc such that any prefix xx of XX is a prefix of some string yy such that C(y)ycC(y)\ge |y|-c. (In the 1960ies this property was suggested in Kolmogorov as one of possible randomness definitions.) We also get another 2-randomness criterion by Miller and Nies: XX is 2-random if and only if C(x)xcC(x)\ge |x|-c for some cc and infinitely many prefixes xx of XX. This is a modified version of our old paper that contained a weaker (and cumbersome) version of Conidis' result, and the proof used low basis theorem (in quite a strange way). The full version was formulated there as a conjecture. This conjecture was later proved by Conidis. Bruno Bauwens (personal communication) noted that the proof can be obtained also by a simple modification of our original argument, and we reproduce Bauwens' argument with his permission.Comment: See http://arxiv.org/abs/0802.2833 for the old pape

    Configuration Complexities of Hydrogenic Atoms

    Full text link
    The Fisher-Shannon and Cramer-Rao information measures, and the LMC-like or shape complexity (i.e., the disequilibrium times the Shannon entropic power) of hydrogenic stationary states are investigated in both position and momentum spaces. First, it is shown that not only the Fisher information and the variance (then, the Cramer-Rao measure) but also the disequilibrium associated to the quantum-mechanical probability density can be explicitly expressed in terms of the three quantum numbers (n, l, m) of the corresponding state. Second, the three composite measures mentioned above are analytically, numerically and physically discussed for both ground and excited states. It is observed, in particular, that these configuration complexities do not depend on the nuclear charge Z. Moreover, the Fisher-Shannon measure is shown to quadratically depend on the principal quantum number n. Finally, sharp upper bounds to the Fisher-Shannon measure and the shape complexity of a general hydrogenic orbital are given in terms of the quantum numbers.Comment: 22 pages, 7 figures, accepted i

    State Complexity of Catenation Combined with Star and Reversal

    Full text link
    This paper is a continuation of our research work on state complexity of combined operations. Motivated by applications, we study the state complexities of two particular combined operations: catenation combined with star and catenation combined with reversal. We show that the state complexities of both of these combined operations are considerably less than the compositions of the state complexities of their individual participating operations.Comment: In Proceedings DCFS 2010, arXiv:1008.127
    corecore