research

Limit complexities revisited [once more]

Abstract

The main goal of this article is to put some known results in a common perspective and to simplify their proofs. We start with a simple proof of a result of Vereshchagin saying that lim supnC(xn)\limsup_n C(x|n) equals C0(x)C^{0'}(x). Then we use the same argument to prove similar results for prefix complexity, a priori probability on binary tree, to prove Conidis' theorem about limits of effectively open sets, and also to improve the results of Muchnik about limit frequencies. As a by-product, we get a criterion of 2-randomness proved by Miller: a sequence XX is 2-random if and only if there exists cc such that any prefix xx of XX is a prefix of some string yy such that C(y)ycC(y)\ge |y|-c. (In the 1960ies this property was suggested in Kolmogorov as one of possible randomness definitions.) We also get another 2-randomness criterion by Miller and Nies: XX is 2-random if and only if C(x)xcC(x)\ge |x|-c for some cc and infinitely many prefixes xx of XX. This is a modified version of our old paper that contained a weaker (and cumbersome) version of Conidis' result, and the proof used low basis theorem (in quite a strange way). The full version was formulated there as a conjecture. This conjecture was later proved by Conidis. Bruno Bauwens (personal communication) noted that the proof can be obtained also by a simple modification of our original argument, and we reproduce Bauwens' argument with his permission.Comment: See http://arxiv.org/abs/0802.2833 for the old pape

    Similar works