2 research outputs found

    A Statistical fMRI Model for Differential T\u3csub\u3e2\u3c/sub\u3e* Contrast Incorporating T\u3csub\u3e1\u3c/sub\u3e and T\u3csub\u3e2\u3c/sub\u3e* of Gray Matter

    Get PDF
    Relaxation parameter estimation and brain activation detection are two main areas of study in magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI). Relaxation parameters can be used to distinguish voxels containing different types of tissue whereas activation determines voxels that are associated with neuronal activity. In fMRI, the standard practice has been to discard the first scans to avoid magnetic saturation effects. However, these first images have important information on the MR relaxivities for the type of tissue contained in voxels, which could provide pathological tissue discrimination. It is also well-known that the voxels located in gray matter (GM) contain neurons that are to be active while the subject is performing a task. As such, GM MR relaxivities can be incorporated into a statistical model in order to better detect brain activation. Moreover, although the MR magnetization physically depends on tissue and imaging parameters in a nonlinear fashion, a linear model is what is conventionally used in fMRI activation studies. In this study, we develop a statistical fMRI model for Differential T2⁎ ConTrast Incorporating T1 and T2⁎ of GM, so-called DeTeCT-ING Model, that considers the physical magnetization equation to model MR magnetization; uses complex-valued time courses to estimate T1 and T2⁎ for each voxel; then incorporates gray matter MR relaxivities into the statistical model in order to better detect brain activation, all from a single pulse sequence by utilizing the first scans

    A Fourier Description of Covariance, and Separation of Simultaneously Encoded Slices with In-Plane Acceleration in fMRI

    Get PDF
    Functional magnetic resonance imaging (fMRI) studies aim to identify localized neural regions associated with a cognitive task performed by the subject. An indirect measure of the brain activity is the blood oxygenation level dependent (BOLD) signal fluctuations observed within the complex-valued spatial frequencies measured over time. The standard practice in fMRI is to discard the phase information after image reconstruction, even with evidence of biological task-related change in the phase time-series. In the first aim of this dissertation, a complex-valued time-series covariance is derived as a linear combination of second order temporal Fourier frequency coefficients. As opposed to magnitude-only analysis, the complex-valued covariance increases the sensitivity and specificity in fMRI correlation analysis, which is particularly advantageous for low contrast-to-noise ratio (CNR) fMRI time-series. In the remaining aims, increased statistical significance is achieved through a higher sampling rate of the fMRI time-course, by simultaneously magnetizing multiple slice images. With multi-frequency band excitations, a single k-space readout reconstructs to an image of composite aliased slice images. To disentangle the signal, or aliased voxels, phase and coil encoding techniques are incorporated into the data acquisition and image reconstruction. Inter-slice signal leakage, which also manifests as improper placement of the BOLD signal, presents in the separated slice images from induced correlations as a result of suboptimal simultaneous multi-slice (SMS) reconstruction methods. In the second aim of this dissertation, the Multi-coil Separation of Parallel Encoded Complex-valued Slices (mSPECS) reconstruction method is proposed as a solution to preserve the activation statistics in the separated slice images through a Bayesian approach of sampling calibration images. In the third aim of this dissertation, the mSPECS reconstruction is extended to include In-Plane Acceleration (mSPECS-IPA), to reconstruct aliased slice images with additional in-plane subsampling using a two-dimensional orthogonal phase encoding derivation of Hadamard encoding. Mitigating induced correlations with mSPECS(-IPA), results in accurately placed functional activation in the previously aliased complex-valued slice images. The development of novel complex-valued analysis and reconstruction methods in fMRI strengthens the significance of the activation statistics and precludes inter-slice signal leakage, so the true underlying neural dynamics are modeled in complex-valued fMRI data analysis
    corecore