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Abstract 
Relaxation parameter estimation and brain activation detection are two main areas of study in magnetic 

resonance imaging (MRI) and functional magnetic resonance imaging (fMRI). Relaxation parameters can be used 

to distinguish voxels containing different types of tissue whereas activation determines voxels that are 

associated with neuronal activity. In fMRI, the standard practice has been to discard the first scans to avoid 

https://doi.org/10.1016/j.mri.2013.09.001
http://epublications.marquette.edu/


magnetic saturation effects. However, these first images have important information on the MR relaxivities for 

the type of tissue contained in voxels, which could provide pathological tissue discrimination. It is also well-

known that the voxels located in gray matter (GM) contain neurons that are to be active while the subject is 

performing a task. As such, GM MR relaxivities can be incorporated into a statistical model in order to better 

detect brain activation. Moreover, although the MR magnetization physically depends on tissue and imaging 

parameters in a nonlinear fashion, a linear model is what is conventionally used in fMRI activation studies. In this 

study, we develop a statistical fMRI model for Differential T2
⁎ ConTrast Incorporating T1 and T2

⁎ of GM, so-called 

DeTeCT-ING Model, that considers the physical magnetization equation to model MR magnetization; uses 

complex-valued time courses to estimate T1 and T2
⁎ for each voxel; then incorporates gray matter MR relaxivities 

into the statistical model in order to better detect brain activation, all from a single pulse sequence by utilizing 

the first scans. 

Keywords 
MRI, fMRI, Complex-valued fMRI analysis, Differential T2

⁎ contrast, Relaxation parameter estimation 

1. Introduction 
The spin density, longitudinal relaxation time, T1, and transverse relaxation time, T2

⁎, provide the three most 

intrinsic and basic contrast mechanisms in MRI/fMRI. It is thus of interest to measure and exploit differences in 

these parameters in order to develop image contrast between different brain tissue since the resulting 

measured values could be used for tissue characterization and provide useful information on local environment 

interaction. The quantization of the relaxation parameters helps to predict both the signal-to-noise ratio (SNR) 

and the contrast-to-noise ratio (CNR) for a given sequence and makes it possible to better understand the 

contrast mechanism and the tissue characterization. 

The Bloch equations describe the behavior of a magnetization vector in the presence of an externally applied 

magnetic field subject to the relaxation process [1]. According to the solution of the Bloch equations, 

magnetization can be characterized by the tissue parameters (T1, T2 or T2
⁎, M0) and imaging parameters (TR, 

TE, ϕ) where TR is the repetition time, TE is the echo time, and ϕ is the flip angle. Thus, the signal change can be 

induced by a change in spin density, T1, and/or T2
⁎. In a T2

⁎-weighted gradient echo (GRE) fMRI experiment, for a 

stationary voxel, the magnetization after the tth excitation, Mt, for a series of excitations is given by: 

(1) 

𝑀𝑡 = [𝑀𝑡−1𝑒
−

𝑇𝑅
𝑇1 𝑐𝑜𝑠(𝜙) + 𝑀0 (1 − 𝑒

−
𝑇𝑅
𝑇1 )] 𝑠𝑖𝑛(𝜙)𝑒

−
𝑇𝐸𝑡
𝑇2∗ . 

Accurate relaxation parameter estimation is essential in quantitative MR applications as being a fundamental 

way of determining image segmentation and tissue characterization as well as quantifying absolute metabolites 

in NMR spectroscopy. A quantitative analysis of T2 can give useful information for cancer discrimination [2]. 

Moreover, tissue characterization may serve as a very important source of information in detecting brain 

activation since it is generally believed that gray matter tissue includes the neurons that are to be active during 

the performance of a task. Considering the fact that fMRI images are based on hemodynamic changes related to 

neuronal activity, and not the electrical activity itself, the accuracy of the brain activation statistics calculated 

from the considered statistical fMRI activation model plays a major role for the medical statements that could 

be drawn. As such, incorporation of the information of the tissue characteristics into the brain activation 

detection process can provide more accurate activation statistics by theoretically eliminating the false positives. 



Using only the magnitude of complex-valued magnetic resonance images has become the gold standard for the 

estimation of the relaxation parameters although voxel time courses in fMRI are complex-

valued [3], [4], [5], [6], [7], [8]. However, Baselice et al. recently presented a statistical technique to estimate 

relaxation times exploiting complex-valued MR images [9]. Wheaton et al. [10] reconstructed T1ρ maps from 

partial k-space image data using linear regression, and error was measured with relation to T1ρ maps created 

from the full k-space images. Haldar et al. utilized the variable projection algorithm for maximum likelihood 

estimation of T1 relaxation parameters by reducing the four-dimensional minimization problem to a two 

dimensional maximization problem, rather than iteratively solving the 4-parameter curve fitting problem [4]. 

In fMRI, voxel time courses are complex-valued after Fourier, or non-Fourier image reconstruction due to the 

phase imperfections as a result of magnetic field inhomogeneities. Although important functional information 

can be inferred from the phase [11], [12], [13], [14], [15], it has been a common practice in fMRI to determine 

functional brain activation from the magnitude-only data model which discards the phase information [16], [17]. 

A complex-valued fMRI activation model was presented by Rowe and Logan [14] to determine functional brain 

activation and it was shown that the use of complex-valued data provides an improved power of detection at 

low SNRs and low CNRs. Therefore, the statistical fMRI model for detecting activation introduced in this study is 

based upon the complex-valued activation model of Rowe and Logan. 

In this manuscript, we develop a statistical fMRI model for Differential T2
⁎ ConTrast Incorporating T1 and T2

⁎ of 

GM, so-called DeTeCT-ING Model, to determine brain activation by incorporating T1 and T2
⁎ of gray matter [18]. 

The model considers the physical nonlinear signal equation to model MR magnetization rather than using a 

linear model; utilizes the first scans of the complex-valued fMRI data to estimate each voxel’s T1 and T2
⁎; and 

incorporates GM T1 and T2
⁎ values into the activation statistics. A single pulse sequence is utilized with three 

parts, where in the first two parts the subject does not perform the task while in the third part the subject 

performs the task as in a standard fMRI experiment. In the first part, several images are acquired at a constant 

TE; in the second part, TE is varied; and in the third part TE is constant. This pulse sequence allows one to have 

the three parts for: a) T1 estimation, b) T2* estimation and c) detecting activation, while all of the model 

parameters are estimated simultaneously using data from the entire scan. The parameter setting in the first part 

allows the utilization of signal change between data acquired during the transient state prior to T1 equilibrium 

and the steady state images since the volumes at the beginning of fMRI block contains a transition signal and the 

signal of the first EPI volume is M1 = M0e− TE
t/T2

⁎. The second and third parts of the pulse sequence differentiate 

the signal with TE and differential task changes respectively since T2
⁎ is influenced by TE, and activation is 

modeled by differential signal change. Furthermore, a slightly modified version of the DeTeCT-ING Model, so-

called DeTeCT Model, is developed by modeling the complex-valued observations according to the physical 

magnetization equation, utilizing the first scans to estimate the MR relaxivities, but not incorporating 

GM T2
⁎and T1 values into the activation statistics in order to observe the benefits of GM MR relaxivities 

incorporation on the computed activation statistics. The Cramer–Rao Lower Bounds (CRLBs), which provide a 

lower bound for the variance of unbiased parameter estimators, are also numerically calculated for DeTeCT-ING 

and DeTeCT Models. 

In order to observe the performance of the DeTeCT-ING model, theoretical illustrations are implemented on 

96 × 96 phantom data through simulation and the model is compared with the conventionally used magnitude-

only (MO) and newer complex-valued (CV) fMRI activation models by comparing the means and variances of the 

model parameters and activation statistics with the true parameter values and CRLBs of the models. The 

DeTeCT-ING model is then evaluated by deploying all four models, DeTeCT-ING, DeTeCT, MO, and CV, in the 

acquired bilateral finger tapping fMRI data. 



2. Theory 

2.1. Complex-valued (CV) fMRI ActivationModel 
After the inverse Fourier transform, images or voxel measurements are complex-valued and still corrupted by 

noise in both real and imaginary parts [14]. 

The complex-valued image measured over time in a given voxel is: 

(2) 

𝑦𝐶𝑉𝑡
= (𝑀𝐶𝑉  𝑡𝑐𝑜𝑠𝜃 + 𝜂𝑅𝑡

) + 𝑖(𝑀𝐶𝑉  𝑡𝑠𝑖𝑛𝜃 + 𝜂𝐼𝑡),

𝑡 = 1,… , 𝑛
 

where (ηRt, ηIt)′ ~ N (0, Σ), the true population magnitude is MCVt, and θ is phase. It is generally assumed that 

Σ = σ2I2. 

The data gathered during the course of an fMRI experiment are comprised of a sequence of individual MR 

images acquired while the subject performs a set of tasks. Throughout the experiment, the subject generally 

alternates between performing no task and performing a task allowing the task-related activations to be 

detected by qualifying the relative changes in the measured signal between individual images. The task-related 

activations are detected by qualifying the relative changes in the measured signal between individual images. 

Using periods of non-task scans is a common means of establishing a baseline on which the assumption is made 

that the brain activity scales in a linear fashion. A linear model is generally used to describe the temporally 

varying magnitude MCVt: 

(3) 

𝑀𝐶𝑉𝑡 = 𝑥′
𝑡𝛽 = 𝛽𝑡 + 𝛽𝑡𝑥1𝑡

+ ⋯+ 𝛽𝑞𝑥𝑞𝑡
, 

where q is the number of non-baseline regressors, xt is the tth row of an n × (q + 1) design matrix X, β is a 

(q + 1) × 1 vector of magnitude regression coefficients, and the operator “′” denotes the transpose of a vector. 

Thus, the observed complex-valued data at time t can be represented by a 2 × 1 real-valued vector, 

(4) 

(
𝑦𝑅𝑡

𝑦𝐼𝑡
) = (

𝑥′
𝑡𝛽𝑐𝑜𝑠𝜃

𝑥′
𝑡𝛽𝑠𝑖𝑛𝜃

) + (
𝜂𝑅𝑡

𝜂𝐼𝑡
), 

where yRt is the real part and yIt is the imaginary part of the observed image-space data at time point, t. 

This model can also be written more generally as 

(5) 

𝑦𝐶𝑉 = (
𝑋 0
0 𝑋

) (
𝛽𝑐𝑜𝑠𝜃
𝛽𝑠𝑖𝑛𝜃

) +𝜂

2𝑛 × 1 2𝑛 × 2(𝑞 + 1) 2(𝑞 + 1) × 1 2𝑛 × 1
 

where the observed vector of data yCV = (y′R, y′I)′ is the vector of observed real values stacked on the observed 

imaginary values and the vector of errors η = (η′R, η′I) ~ N (0, Σ ⊗ Φ) is similarly defined. It is generally assumed 

that Σ = σ2I2 and Φ = In. 



FMRI does not directly measure the electrical activity of the neurons, but the change in blood oxygenation 

indirectly caused by that activity. Thus, model parameters are estimated under the appropriately constrained 

null and alternative hypotheses, H0: C β = 0 versus H1: C β ≠ 0, after which activation is determined with a 

generalized likelihood ratio statistic. 

Unrestricted MLE’s of the parameters, phase, 𝜃, regression coefficients, �̂�, and variance, �̂�2, under the 

alternative hypothesis, H1: C β ≠ 0, can be derived by maximizing the logarithm of the likelihood function and 

yields 

(6) 

𝜃 =
1

2
𝑡𝑎𝑛−1 [

2�̂�′
𝑅
(𝑋′𝑋)�̂�𝐼

�̂�′
𝑅
(𝑋′𝑋)�̂�𝑅 − �̂�′

𝐼
(𝑋′𝑋)�̂�𝐼

]

�̂� = �̂�𝑅𝑐𝑜𝑠𝜃 + �̂�𝐼𝑠𝑖𝑛𝜃

�̂�2 =
1

2𝑛
[𝑦 − (

𝑋�̂�𝑐𝑜𝑠𝜃

𝑋�̂�𝑠𝑖𝑛𝜃
)]

′

[𝑦 − (
𝑋�̂�𝑐𝑜𝑠𝜃

𝑋�̂�𝑠𝑖𝑛𝜃
)]

 

where the estimate of the regression coefficients from the real part of the time series under the alternative 

hypothesis is �̂�R = (X'X)− 1X'yR and the estimate of the regression coefficients from the imaginary part of the time 

series under the alternative hypothesis is �̂�I = (X'X)− 1X'yI [14], [15], [20]. 

The MLE’s of the parameters, phase, �̃�, regression coefficients, β̃, and variance, σ̃2, under the constrained null 

hypothesis, H0: C β = 0, can also be derived by maximizing the logarithm of the likelihood function with the 

Lagrange multiplier term Ψ′ (C β − 0) and yields 

(7) 

�̃� =
1

2
𝑡𝑎𝑛−1 [

2�̂�′
𝑅
𝛹(𝑋′𝑋)�̂�𝐼

�̂�′
𝑅
𝛹(𝑋′𝑋)�̂�𝑅 − �̂�′

𝐼
𝛹(𝑋′𝑋)�̂�𝐼

]

�̃� = 𝛹[�̂�𝑅𝑐𝑜𝑠�̃� + �̂�𝐼𝑠𝑖𝑛�̃�]

�̃�2 =
1

2𝑛
[𝑦 − (

𝑋�̃�𝑐𝑜𝑠�̃�

𝑋�̃�𝑠𝑖𝑛�̃�
)]

′

[𝑦 − (
𝑋�̃�𝑐𝑜𝑠�̃�

𝑋�̃�𝑠𝑖𝑛�̃�
)]

 

where Ψ is 

(8) 

𝛹 = 𝐼𝑞+1 − (𝑋′𝑋)−1𝐶′[𝐶(𝑋′𝑋)−1𝐶′]−1𝐶 

[14], [15], [20]. 

Denoting the maximum likelihood estimators under the alternative hypothesis using hats, and those under the 

null hypothesis using tildes, the generalized likelihood ratio statistics for the CV model, − 2logλC, can be derived 

as, 



(9) 

−2𝑙𝑜𝑔𝜆𝐶 = 2𝑛𝑙𝑜𝑔 (
�̃�2

�̂�2
), 

where λC is the likelihood ratio statistics and n is the number of time points in the fMRI experiment. 

This statistic has an asymptotic χr
2 distribution in large samples, where r is the difference in the number of 

constraints between the alternative and the null hypotheses or the full row rank of C. Note that, when r = 1, 

two-sided testing can be performed using the signed likelihood ratio test given by 

(10) 

𝑍𝐶 = 𝑠𝑖𝑔𝑛(𝐶�̂�)√−2𝑙𝑜𝑔𝜆𝐶  

which in large samples has an approximate standard normal distribution under the null hypothesis [14], [19]. 

With the given distributional specifications, the CRLBs can be computed from the likelihood of the complex-

valued data [20]. 

2.2. Magnitude-Only (MO) fMRI Activation Model 
In fMRI, complex-valued time courses are almost exclusively converted to magnitude and phase time courses, 

then the magnitude-only activation is detected while phase voxel time courses are discarded [16], [17]. This 

typical method to compute the activation using only the magnitude at time t, denoted by yMOt is written as 

(11) 

𝑦𝑀𝑂 𝑡
= [(𝑀𝑀𝑂 𝑡

𝑐𝑜𝑠𝜃 + 𝜂𝑅𝑡
)
2
+ (𝑀𝑀𝑂 𝑡

𝑠𝑖𝑛𝜃 + 𝜂𝐼𝑡)
2
]

1
2
, 

where (ηRt, ηIt)′ ~ N (0, σ2I2) and true population magnitude, MMOt, is given by Eq. (3). 

The magnitude of a complex-valued observation at time t is not normally distributed but is Ricean 

distributed [21], [22], [14]. The Ricean distribution of the magnitude yMOt at time t becomes normal with 

mean x′tβ and variance σ2 at high SNRs. 

This model can also be written as 

(12) 

𝑦𝑀𝑂 = 𝑋 𝛽 + 휀

𝑛 × 1 𝑛 × 1(𝑞 + 1) (𝑞 + 1) × 1 𝑛 × 1
, 

where ε ~ N (0, σ2Φ), Φ is the temporal correlation matrix often taken to be Φ = In after pre-whitening of the 

data. 

Assuming a normal distribution for the errors in Eq. (12), the unconstrained maximum likelihood estimates of 

the parameters (β, σ2) can be derived as 

(13) 



�̂� = (𝑋′𝑋)−1𝑋′𝑚

�̂�2 = (𝑚 − 𝑋�̂�)
′
(𝑚 − 𝑋�̂�)/𝑛.

 

In order to construct a generalized likelihood ratio test of the hypothesis H0: C β = 0 versus H1: C β ≠ 0, where C is 

a full row rank matrix, the likelihood under the constrained hypothesis is maximized. The constrained MLE’s can 

be derived as 

(14) 

�̃� = 𝛹�̂�

�̃�2 = (𝑚 − 𝑋�̃�)
′
(𝑚 − 𝑋�̃�)/𝑛,

 

where Ψ is defined as in Eq. (8). 

Similarly with the complex activation model, the likelihood ratio statistics for the MO are given by, 

(15) 

−2𝑙𝑜𝑔𝜆𝑀 = 𝑛𝑙𝑜𝑔 (
�̃�2

�̂�2
). 

The likelihood ratio test has an asymptotic χ1
2 distribution and is asymptotically equivalent to the usual t tests 

for activation given by 

(16) 

𝑡 =
�̂�2

𝑆𝐸(�̂�2)
. 

With the given distributional specifications, the CRLBs can be computed from the likelihood of the magnitude-

only data [20]. 

2.3. DeTeCT-ING and DeTeCT fMRI Activation Models 

2.3.1. Modeling fMRI Data 
The temporally varying magnitude of the signal can be represented by incorporating the effect of the task 

execution to the magnetization. In the DeTeCT-ING and DeTeCT Models, the temporally varying magnitude, Mt, 

for an individual voxel, is defined as 

(17) 

𝑀𝑡 = [𝑀𝑡𝑒
−

𝑇𝑅
𝑇1 𝑐𝑜𝑠(𝜙) + 𝑀0 (1 − 𝑒

−
𝑇𝑅
𝑇1 )] 𝑠𝑖𝑛(𝜙)𝑒

−
𝑇𝐸𝑡

𝑇2∗+𝛿𝑧𝑡 + 𝑥𝑡𝛽1. 

where x′tβ1 = β1xt. 

In this model, δ is the differential signal change, which is a coefficient for a reference function zt related to a 

block experimental design. As noted before, brain activation causes changes in blood oxygenation leading to 



changes in decay parameter, T2
⁎. Therefore, the parameter δzt is included with the decay parameter T2

⁎ in the 

exponential function. The coefficient β1 is the coefficient for a time trend t for all voxels. 

The complex-valued observations at time t can then be described as 

(18) 

𝑦𝑡 = [(𝑀𝑡−1𝑒
−𝑇𝑅/𝑇1𝑐𝑜𝑠(𝜙) + 𝑀0(1 − 𝑒−𝑇𝑅/𝑇1)) 𝑠𝑖𝑛(𝜙)𝑒−𝑇𝐸𝑡/𝑇2 ∗+𝛿𝑧𝑡

+ 𝑥𝑡𝛽1] (𝑐𝑜𝑠𝜃𝑡 + 𝑖𝑠𝑖𝑛𝜃𝑡) + (𝜂𝑅𝑡
+ 𝑖𝜂𝐼𝑡) 

where (ηRt, ηIt)′ ~ N (0, Σ) and it can be assumed that Σ = σ2I2 as in Eq. (5). 

2.3.2. Estimation of the Model Parameters 
Least Squares (LS) estimation is a method of estimating parameters by minimizing the squared discrepancies on 

the observed data and their expected values. Working in the complex domain with the data having normally 

distributed noise and dealing with an over determined system allows for the use of a LS estimator, which is a 

computationally convenient measure of fit. As the unknown parameters of this model, (M0, T1, T2
⁎, δ, β1, θ) are 

nonlinear in the representation of the magnetization given by Eq. (18), a nonlinear LS estimation can be 

implemented. 

The nonlinear LS estimator, Γ̂ (M0, T1, T2
⁎, δ, β1, θ) is obtained by minimizing the function, 

(19) 

𝜎2(𝑀0, 𝑇1, 𝑇2 
∗, 𝛿, 𝛽1, 𝜃|𝑦𝑅𝑡

, 𝑦𝐼𝑡 , 𝑇𝑅, 𝜙, 𝑇𝐸𝑡 , 𝑧𝑡)

=
1

2𝑛
∑[(𝑦𝑅𝑡

− 𝑀𝑡𝑐𝑜𝑠𝜃)
2
+ (𝑦𝐼𝑡 − 𝑀𝑡𝑠𝑖𝑛𝜃)

2
]

𝑛

𝑡=1

, 

with respect to the unknown parameters, M0, T1, T2
⁎, δ, β1, θ; where Mt is given by Eq. (17). In this objective 

function, yt = yRt + iyIt is the observed signal of an individual voxel at time t; and Mtcosθ and Mtsinθ are the 

expected real and imaginary parts of the signal. 

It is well known that the LS procedure corresponds to the maximum likelihood estimate (MLE) when appropriate 

probabilistic assumptions about underlying error distributions can be made, as in the proposed model. Since the 

nonlinear LS problem has no closed solution and is usually solved by iterative refinement, the parameters of the 

model will be determined numerically. 

2.3.3. fMRI Activation 
The main issue in analyzing functional MRI images is comparing images in a statistically meaningful way. In this 

study, the simple matter of detecting ‘activation’, the local increase in the effect of the task, with most of the 

brain unaffected by the task, is the primary focus of study. The model parameters are estimated under 

appropriately constrained null and alternative hypotheses, after which activation is determined, which is 

characterized by differential T2
⁎ contrast, δ, with a generalized likelihood ratio statistic. 

According to the parameterization in the setting of the DeTeCT-ING Model, “active” or “on” regions in the brain 

contain voxels with values T1 = T1GM, T2
⁎ = T2

⁎
GM and δ ≠ 0 while “inactive” or “off” regions contain voxels 

with T1 = T1GM, T2
⁎ = T2

⁎
GM and δ = 0 where T1GM and T2

⁎
GM are GM T1 and T2

⁎ values. 



Maximum likelihood estimates of the parameters (M0, T1, T2
⁎, δ, β1, θ) can then be determined for both 

restricted alternative and null hypotheses. The hypotheses pair, 

(20) 

𝐻0: 𝑇1 = 𝑇1𝐺𝑀
, 𝑇2 

∗ = 𝑇2 
∗
 𝐺𝑀

, 𝛿 = 0𝑣𝑠𝐻1: 𝑇1 = 𝑇1𝐺𝑀
, 𝑇2 

∗ = 𝑇2 
∗
 𝐺𝑀

, 𝛿 ≠ 0 

detects task related voxel activation in GM. 

According to the parameterization in the setting of the DeTeCT Model, “active” or “on” regions in the brain 

contain voxels with values δ ≠ 0 while “inactive” or “off” regions contain voxels with δ = 0. Maximum likelihood 

estimates of the parameters (M0, T1, T2
⁎, δ, β1, θ) can be determined for both restricted alternative and null 

hypotheses. The hypotheses pair,(21)H0:δ=0vs.H1:δ≠0detects task related voxel activation without 

consideration of the tissue type. 

Parameter estimates under the null hypothesis, (M̃0, T̃1, T̃2
⁎, δ̃, β1̃, θ̃), and the alternative hypothesis, 

(M̂0, T̂1, T̂2
⁎, δ̂, β 1̂, θ̂), for the models can be determined by numerical minimization of Eq. (19) with respect to 

the parameters. The generalized likelihood ratio statistics, λC, the ratio of restricted null over alternative 

hypotheses lead to the large sample χ1
2 distributed statistic, − 2logλC that is given in Eq. (9). Two-sided testing 

can then be performed using the signed likelihood ratio test given by Eq. (10). 

3. Methods and materials 

3.1. Simulated data 

3.1.1. Part I: Simulated Phantom Data with the Fixed Parameter Setting 
The first part of the simulation study theoretically illustrates the properties of the parameter estimates for the 

introduced models. For this part, a 96 × 96 slice of the human head with two 7 × 7 region of interests (ROIs) was 

realistically simulated according to the Shepp–Logan phantom standards [23]. Data for all models were 

generated to simulate voxel activation from a bilateral finger tapping fMRI block design experiment. The block 

design consisted of 20 s off followed by sixteen epochs of 15 s on and 15 s off with TR = 1 s. The simulation 

consisted of n = 510 time points where the true activation structure is known to be within ROIs so that the 

model can be evaluated. The considered ROIs that are designated to have activation are shown in Fig. 1. The 

presented results for this part of our simulation study are calculated over 500 simulations. 

 
Fig. 1. Anatomical mask with ROIs. 
 



The spin density and the relaxation parameter values of the simulated tissues measured at 3.0-T are given 

in Table 1 [24]. The parameter values of the voxels that consist of different kinds of tissue were obtained by 

averaging their values. For all voxels inside the phantom in this simulation, the phase and the flip angles were 

generically selected to be θ = 45°, ϕ = 90° while β1 = .01 and σ = .01. The differential T2
⁎ contrast, δ, was given a 

constant value of 1 for the voxels in ROIs while defined to be zero for the inactive regions. The true maps of the 

true spin density, M0; longitudinal relaxation, T1; transverse relaxation, T2
⁎; differential T2

⁎ contrast, δ; linear 

trend, β1, and phase angle, θ are illustrated in Figs. 2a, b, c, d, e and f, respectively. 

Table 1. Spin density and the relaxation times in milliseconds for the Shepp–Logan Phantom. 

Tissue M0 T1 T2
⁎ 

CSF 1 4000 2200 

Gray Matter (GM) 0.83 1331 42 

White Matter (WM) 0.71 832 49 

 

 
Fig. 2. True parameter maps for DeTeCT and DeTeCT-ING Models generated according to 2D Shepp–Logan 

phantom standards for a 96 × 96 slice. a) True M0 map, b) true T1 map in s., c) true T2
⁎ map in s., d) true δ map, 

e) true β1 map, f) true θ map. 
 

Simulated fMRI data are generated according to the proposed model given by Eqs. (17), (18). An fMRI block 

design experiment with an acquisition of 510 repetitions was used to estimate the model parameters. For each 

voxel, time depending echo time, TEt, was assumed to consist of three parts. In the first part, it is fixed as having 

a value of 42.7 ms at the first 10 time points. In the second part, the first 5 TE values are equispaced in the 

interval [42.7 ms,52.7 ms] that consists of the following TE values: 42.7, 45.2, 47.7, 50.2, 52.7, and this 

procedure is repeated again for the next 5 time points. Finally, the last 490 TE values are fixed as 42.7 ms as 

illustrated in Fig. 3a. The time trend X is a column of counting numbers, where the reference function, zt, which 

is illustrated in Fig. 3b, consists of blocks of 0’s and 1’s, as being related to the block experimental design. It can 

be noted here that a better simulation may be performed with an assumption of very short T2
⁎ (<10−6 ms.) 

values outside the phantom image. 



 
Fig. 3. Imaging parameters. a) Echo time, TEt; b) reference function, zt. 
 

3.1.2. Part II: Simulated Data of Two Voxels with the Varying Parameter Setting 
In this simulation study, we evaluate the performances of the considered models for detecting activation with 

the use of the data generated from one active GM voxel as in an ROI area and one inactive GM voxel from 

outside of the ROIs at varying parameter settings. For an effective evaluation of the models’ performances, we 

created two sets of scenarios in which we vary a specific parameter and analyze the models’ detection 

performances under these settings. These scenarios were created with the following parameter settings: a) to 

analyze the models at different levels of the effect of the neural activity in the signal: differential T2
⁎ contrast, δ, 

values of the active voxel varying from 0 to 1 with increments of 0.01, σ = 0.5, and threshold significance level, α 

= 0.05; b) to analyze the sensitivity of the models to the pre-specified α level: threshold significance level, α, 

varying from 0.01 to 0.1 with steps of 0.0009, σ = 0.5, and δ = 0.1 for the active voxel. The values of the fixed σ 

and δ were selected as 0.5 and 0.1, respectively to better observe the efficacy of the models in the presence of 

high standard deviation noise level and low neural activity effect in the signal. All the other imaging parameters 

were selected as the same as the ones in Part I. The number of simulations that were performed for both voxels 

in each scenario was 1000. This simulation was used to measure the accuracy of each model in recognizing the 

presence of the activation and inactivation in order to compare the accuracy of the models’ outcomes with the 

known activation schemes. 

Furthermore, in order to better analyze the overall performances of the models by presenting the connection 

between the CRLBs and computed sample variances, we created Scenario “c” in which the data of the single 

active voxel were generated similarly to Scenario “a”, with δ values varying from 0 to 1 with increments of 0.1 

and threshold significance level, α = 0.05. For this scenario, we selected σ to be 0.01 in order to get the same 

signal properties in our phantom simulation in Part I. The number of simulations that were performed in 

Scenario “c” was 1000. 

3.2. Human Subject Data 
To observe the performance of the proposed model in experimental data, an fMRI experiment was performed 

on a single subject on a 3.0-T General Electric Signa LX magnetic resonance imager. A bilateral finger-tapping 

task was performed with a visual cue indicating whether to tap or rest. The paradigm followed a block design 

with an initial 20 s rest followed by 16 epochs of 15 s on and 15 s off. The data sets were composed of seven 2.5-

mm-thick axial slices that are 96 × 96 in dimension for a 24-cm FOV, with the phase encoding direction oriented 

as posterior to anterior (top–bottom in images). A single slice was selected for analysis. Acquired for a series of 



510 TRs, the data sets had a TR of 1 s, a flip angle of 90° and an acquisition bandwidth of 125 kHz. A time varying 

TE array as it was explained in the theoretical methods was utilized. 

As a common practice in fMRI studies, the first 3–5 observations are normally discarded and the reference 

function is usually designed to be related to a block design consisting of epochs of on and offs starting at the 

10th time point with a constant TE. As such, the signal that is acquired for the DeTeCT and DeTeCT-ING Models 

at the 10th–19th time points is not acquired for MO and CV Models. In order to imitate this common practice, 

the first 20 observations were excluded before applying CV and MO Models to both simulated and acquired 

human brain data. Unlike traditional studies, these first observations were not discarded in the DeTeCT and 

DeTeCT-ING Models as they contain information on different tissue characterization. Parameter estimates of the 

DeTeCT and DeTeCT-ING Models were determined by numerical minimization of Eq. (19) with the use of 

MATLAB’s optimization toolbox. Activation from − 2logλ likelihood ratio statistics which are given in Eq. (15) for 

MO Model and Eq. (9) for CV, DeTeCT and DeTeCT-ING Models, was thresholded at a 5% Bonferroni family-wise 

error rate [25]. All programs were written in the MATLAB programming language on a dual quad-core PC with 24 

gigabytes of RAM running Microsoft Windows 7. 

4. Results 

4.1. Analysis 
To observe the performance of the proposed methods, the true parameter values and the theoretical minimum 

standard deviations are compared to the sample means and sample standard deviations of the model 

parameters computed from the simulation study presented in Part I of Section 3.1.The parameter values that 

are used to generate data for our simulation study are used for the true values of the parameters the DeTeCT 

and DeTeCT-ING Models have. For the parameter that only CV and MO Models have, the analytically driven 

MLEs are used to compute true parameter values from the data with no added noise. Furthermore, the 

analytically driven CRLBs are used to calculate the theoretical minimum standard deviations for CV and MO 

Models [20], [26], [27] whereas the CRLBs of the DeTeCT and DeTeCT-ING Models are numerically calculated. 

The derivations of the analytical expressions for the derivatives of the likelihood function of the DeTeCT and 

DeTeCT-ING Models, which are used to numerically compute THE CRLBs of the model parameters, are given in 

Appendix A. CLRBs provide a quantitative measure of the attainable precision of the parameter estimates from a 

given set of observations. They give insight into the potential performance of the estimators, the performance 

of the implementation and computation of the estimation models, and the efficiency of the estimators. 

In order to better compare the estimated results and the theoretical values, the average voxel values of the 

descriptive statistics for each tissue type (GM: gray matter, WM: white matter, CSF, Out: outside brain, and ROI) 

for the parameters estimated under the alternative and null hypotheses are presented 

in Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9.The first columns that correspond to each 

parameter represent the true value/theoretical minimum standard deviation values, the second and third 

columns represent the sample mean/standard deviation values computed from the null (Null) and the 

alternative (Alt) hypothesis, respectively. In the tables, the power of the estimation is given with a formatting 

code as regular represents the theoretical value, italic represents a “good”, bold represents a “fair”, and bold 

italic represents a “poor” estimate. 



Table 2. The average voxel values of the CV Model mean maps. 

MEA
N 

β0   β1   β2   θ   σ2   

 
β0 Tru
e 

β0 Alt β0 Nul
l 

β1 Tru
e 

β1 Alt β1 Nul
l 

β2 Tru
e 

β2 Alt β2 Nul
l 

θ True θ Alt θ Null σ2 Tru
e 

σ2 Alt σ2 Nul
l 

GM 2.708 2.708 2.708 0.01 0.0100 0.01 3.80E-
16 

− 4.41E
-08 

0 0.785
4 

0.785
4 

0.7854 0.0001 9.96E
-05 

0.000
1 

WM 2.758 2.758 2.758 0.01 0.0100 0.01 1.64E-
16 

2.95E-
07 

0 0.785
4 

0.785
4 

0.7854 0.0001 9.96E
-05 

0.000
1 

CSF 2.757 2.757 2.757 0.01 0.0100 0.01 2.09E-
16 

− 2.06E
-06 

0 0.785
4 

0.785
4 

0.7854 0.0001 9.96E
-05 

0.000
1 

Out 1.25E-
14 

− 1.02E
-06 

− 4E-
07 

1E-17 − 2.38E
-09 

− 2.1E
-09 

6.16E-
31 

1.24E-
06 

0 0.000
0 

0.000
2 

− 0.000
5 

0.0001 9.95E
-05 

0.000
1 

ROI 2.7076 2.7076 2.832
2 

0.0100 0.0100 0.010
0 

0.2542 0.2542 0 0.785
4 

0.785
4 

0.7854 0.0001 9.96E
-05 

0.008
2 

 

Table 3. The average voxel values of the CV Model standard deviation maps. 

SD β0   β1   β2   θ   σ2    
β0 Min. 
Theo. 

β0 Alt β0 Null β1 Min. 
Theo. 

β1 Alt β1 Null β2 Min. 
Theo. 

β2 Alt β2 Null θ Min. 
Theo. 

θ Alt θ Null σ2 Min. 
Theo. 

σ2 Alt σ2 Null 

GM 0.0006 0.0006 0.0005 3E-06 3.19E-06 3.19E-06 0.0009 0.00090 0 1E-04 1E-04 0.0002 5E-06 4.5E-06 4.5E-06 

WM 0.0006 0.0006 0.0005 3E-06 3.2E-06 3.2E-06 0.0009 0.00090 0 1E-04 1E-04 0.0002 5E-06 4.5E-06 4.5E-06 

CSF 0.0006 0.0006 0.0005 3E-06 3.19E-06 3.18E-06 0.0009 0.00090 0 1E-04 1E-04 0.0002 5E-06 4.5E-06 4.5E-06 

Out 0.0006 0.0008 0.0006 3E-06 4.12E-06 4.13E-06 0.0009 0.00117 0 4E + 10 0.907 0.9015 5E-06 4.5E-06 4.5E-06 

ROI 0.0006 0.0006 0.0005 3E-06 3.2E-06 3.2E-06 0.0009 0.00090 0 1E-04 1E-04 0.0002 5E-06 4.5E-06 5.7E-05 

 

Table 4. The average voxel values of the MO Model mean maps. 

MEAN β0   β1   β2   σ2    
β0 True β0 Alt β0 Null β1 True β1 Alt β1 Null β2 True β2 Alt β2 Null σ2 True σ2 Alt σ2 Null 

GM 2.708 2.708 2.708 0.01 0.0100 0.01000 2.047E-16 − 1.6E-06 0 0.0001 9.938E-05 9.96E-05 

WM 2.758 2.758 2.758 0.01 0.0100 0.01000 2.1858E-16 − 1E-06 0 0.0001 9.934E-05 9.95E-05 

CSF 2.757 2.757 2.757 0.01 0.0100 0.01000 3.3307E-16 − 3.4E-06 0 0.0001 9.936E-05 9.96E-05 

Out 0.000 0.013 0.013 1E-17 0.0000 0.00000 6.163E-31 2.98E-07 0 0.0001 4.266E-05 4.27E-05 



ROI 2.708 2.708 2.832 0.01 0.0100 0.00998 0.25421653 0.254215 0 0.0001 9.941E-05 0.016244 

 

Table 5. The average voxel values of the MO Model standard deviation maps. 

SD β0   β1   β2   σ2    
β0 Min. Theo. β0 Alt β0 Null β1 Min. Theo. β1 Alt β1 Null β2 Min. Theo. β2 Alt β2 Null σ2 Min. Theo. σ2 Alt σ2 Null 

GM 0.0006 6E-04 0.0005 3E-06 3E-06 3.19E-06 0.000904 0.000904 0 6E-06 6.369E-06 6.38E-06 

WM 0.0006 6E-04 0.0005 3E-06 3E-06 3.2E-06 0.000904 0.000904 0 6E-06 6.357E-06 6.36E-06 

CSF 0.0006 6E-04 0.0005 3E-06 3E-06 3.18E-06 0.000904 0.000904 0 6E-06 6.358E-06 6.36E-06 

Out 0.0006 4E-04 0.0003 3E-06 2E-06 2.09E-06 0.000904 0.000592 0 6E-06 2.894E-06 2.9E-06 

ROI 0.0006 6E-04 0.0005 3E-06 3E-06 3.2E-06 0.000904 0.000905 0 6E-06 6.364E-06 0.000115 

 

Table 6. The average voxel values of the DeTeCT Model mean maps. 

MEAN M0   T1   T2
⁎   δ    

M0 True M0 Alt M0 Null T1 True T1 Alt T1 Null T2
⁎ True T2

⁎ Alt T2
⁎ Null δ True δ Alt δ Null 

GM 0.83 0.834 0.833 1.331 1.327 1.327 0.042 0.0426 0.0425 0 7.37E-06 0 

WM 0.71 0.711 0.711 0.832 0.830 0.830 0.049 0.0495 0.0495 0 6.74E-06 0 

CSF 1 1.030 1.025 4 4.025 4.021 2.2 9.6711 14.079 0 1.317 0 

Out 1E-11 0.0004 0.0006 1000 1001.76 1001.88 1000 773.346 921.512 1E-17 -57.17 0 

ROI 0.83 0.8563 9.446 1.331 1.3205 0.0783 0.042 0.0407 0.0120 1 3.8058 0  
β1   θ   σ2    
β1 True β1 Alt β1 Null θ True θ Alt θ Null σ2 True σ2 Alt σ2 Null 

GM 0.01 0.0100 0.0100 0.7853 0.7853 0.7853 0.0001 9.95E-05 9.96E-05 

WM 0.01 0.0099 0.0099 0.7853 0.7853 0.7853 0.0001 9.94E-05 9.95E-05 

CSF 0.01 0.0099 0.0099 0.7853 0.7853 0.7853 0.0001 9.95E-05 9.96E-05 

Out 1E-17 − 3.48E-09 − 3.50E-09 0 0.0004 0.0004 0.0001 9.96E-05 9.96E-05 

ROI 0.01 0.0099 0.0100 0.7853 0.7853 0.7853 0.0001 9.95E-05 0.008020 

 

Table 7. The average voxel values of the DeTeCT Model standard deviation maps. 

SD M0   T1   T2
⁎   δ    

M0 Min. Theo. M0 Alt M0 Null T1 Min. Theo. T1 Alt T1 Null T2
⁎ Min. Theo. T2

⁎ Alt T2
⁎ Null δ Min. Theo. δ Alt δ Null 

GM 0.0857 0.0856 0.0851 0.0358 0.0367 0.0365 0.0052 0.0055 0.0054 0.00023 0.000253 0 

WM 0.0537 0.0537 0.0534 0.0237 0.0240 0.0238 0.0053 0.0055 0.0054 0.00024 0.000259 0 



CSF 0.0718 0.8674 0.1191 0.0158 3.9971 0.5101 8.8591 20.285 25.833 0.46598 24.77650 0 

Out 0.2807 1.1572 4.3318 3.14E-13 74.257 75.814 1.14E-19 7140.6 1203.4 5.65E-20 5053.601 0 

ROI 0.0857 0.0586 3.0724 0.0358 0.0370 0.0271 0.0052 0.0029 0.0020 3.2462 6.813494 0  
β1   θ   σ2    
β1 Min. Theo. β1 Alt β1 Null θ Min. Theo. θ Alt θ Null σ2 Min. Theo. σ2 Alt σ2 Null 

GM 3.08E-06 3.08E-06 3.08E-06 1.44E-04 1.44E-04 1.44E-04 4.43E-06 4.41E-06 4.42E-06 

WM 3.08E-06 3.08E-06 3.08E-06 1.42E-04 1.42E-04 1.42E-04 4.43E-06 4.41E-06 4.41E-06 

CSF 3.08E-06 3.03E-06 3.03E-06 1.41E-04 1.41E-04 1.41E-04 4.43E-06 4.42E-06 4.43E-06 

Out 9.54E-07 3.91E-06 3.91E-06 6.72E-12 8.33E-01 8.32E-01 4.43E-06 4.42E-06 4.42E-06 

ROI 3.08E-06 3.05E-06 3.68E-06 1.38E-04 1.38E-04 1.39E-04 4.43E-06 4.41E-06 5.63E-05 

 

Table 8. The average voxel values of the DeTeCT-ING Model mean maps. 

MEAN M0   δ   β1   θ   σ2    
M0 True M0 Alt M0 Null δ 

True 
δ Alt δ 

Null 
β1 True β1 Alt β1 Null θ True θ Alt θ Null σ2 True σ2 Alt σ2 Null 

GM 0.83 0.8299 0.829 0 1.18E-06 0 0.01 0.0100 0.0100 0.7853 0.7853 0.7853 0.0001 9.96E-05 9.97E-05 

WM 0.71 1.0801 1.079 0 − 2.44E-
05 

0 0.01 0.0099 0.0099 0.7853 0.7853 0.7853 0.0001 9.98E-05 9.99E-05 

CSF 1 1.0881 1.086 0 − 0.00019 0 0.01 0.0099 0.0099 0.7853 0.7853 0.7853 0.0001 0.000112 0.000112 

Out 1E-11 1.91E-
06 

3.79E-
06 

1E-17 45.1519 0 1E-17 − 2.83E-
09 

− 3.26E-
09 

0 0.0001 0.0002 0.0001 9.95E-05 9.96E-05 

ROI 0.83 0.8300 1.382 1 1.0169 0 0.01 0.0099 0.0100 0.7853 0.7853 0.7853 0.0001 9.96E-05 0.008096 

 

Table 9. The average voxel values of the DeTeCT-ING Model standard deviation maps. 

SD M0   δ   β1   θ   σ2    
M0 Mi
n. 
Theo. 

M0 Alt M0 Null δ Min. 
Theo. 

δ Alt δ Null β1 Min. 
Theo. 

β1 Alt β1 Null θ Min. 
Theo. 

θ Alt θ Null σ2 Min. 
Theo. 

σ2 Alt σ2 Null 

GM 0.0857 0.00483
6 

0.00443
0 

0.00023
3 

0.00023
2 

0.00000
0 

0.00000
3 

0.00000
3 

0.00000
3 

0.00014
4 

0.00014
4 

0.00014
4 

0.00000
4 

0.00000
4 

0.00000
4 

W
M 

0.0537 0.00482
8 

0.00442
7 

0.00024
4 

0.00017
8 

0.00000
0 

0.00000
3 

0.00000
3 

0.00000
3 

0.00014
2 

0.00014
2 

0.00014
2 

0.00000
4 

0.00000
4 

0.00000
4 

CSF 0.0718 0.00482
9 

0.00442
0 

0.49267
3 

0.00017
6 

0.00000
0 

0.00000
3 

0.00000
3 

0.00000
3 

0.00014
1 

0.00014
1 

0.00014
1 

0.00000
4 

0.00000
5 

0.00000
5 



Out 0.2807 0.00637
4 

0.00587
9 

0.00000
0 

709.298 0.00000
0 

0.00000
1 

0.00000
4 

0.00000
4 

0.00000
0 

0.83754
3 

0.85797
5 

0.00000
4 

0.00000
4 

0.00000
4 

ROI 0.0857 0.00481
2 

0.00441
8 

3.24621
2 

0.13642
6 

0.00000
0 

0.00000
3 

0.00000
3 

0.00000
3 

0.00013
8 

0.00013
8 

0.00013
9 

0.00000
4 

0.00000
4 

0.00005
6 



For the quantitative analysis of the activation detection performances of the models, the simulation results 

presented in Part II of Section 3.1 were evaluated by utilizing three criteria. The first two are the true positive 

rate (TPR), proportion of the times that an active is correctly detected as active, and false positive rate (FPR), 

proportion of the times that an inactive voxel is incorrectly detected as active. The third criterion is the receiver 

operator characteristic (ROC), which is a plot FPR (one minus the specificity) on the x-axis versus TPR (sensitivity) 

on the y-axis, which gives the tradeoff between the cost of failing to detect the activity against the cost of raising 

false positives. For the first two criteria, we generate the TPR and FPR versus the parameters varied, δ and α, 

curves for Scenarios “a” and “b”, respectively, introduced in Part II of Section 3.1. For the ROC curves, each 

varying parameter value (δ or α) determines a (x, y) point on the curve. To generate the ROC curves for 

Scenarios “a” and “b”, TPR and FPR for a fixed δ or α value are computed from the data of the selected active 

and inactive voxels, respectively. These are then averaged across 1000 simulated images to generate the (x, y) 

point. This is repeated for the considered range of the varied parameter values to generate a curve. ROC curves 

range from (0, 0) to (1, 1), and a good model is ideally expected to have a curve that is as close to the upper left 

quadrant (1, 0) as possible. 

In order to better evaluate the efficiency of the models’ estimators, the single voxel simulation that is performed 

under Scenario “a” is used for the analyses of the properties of the parameter estimates. The first criterion of 

such analysis is to compare the computed CRLBs and the sample variances of the parameters at varying δ, 

whereas the second criterion is to compare mean squared errors (MSEs) of the estimators, which incorporate 

both the variance and the bias of the estimators, at varying δ. 

All computations were performed on an HP Z600 with dual-quad core Xeon X5570 2.93 GHz processors, 24 GB of 

DDR3 RAM, 1 TB SATA-300 hard drive, 64 bit, Windows 7 in Matlab 2012. The computation times of the DeTeCT 

and DeTeCT-ING Models for the estimation of the model parameters and the activation statistics of a 96 × 96 

human subject data that were acquired with the setting given in Section 3.2 were found to be 77.36 min and 

9.23 min, respectively. The reason for having a higher computation time for the DeTeCT Model can be explained 

by the computational complexity of this model resulting from simultaneous estimation of seven parameters. 

4.2. Simulated Data Results 

4.2.1. Part I: Simulated Phantom Data with the Fixed Parameter Setting 
The true value and the theoretical minimum standard deviation maps of the parameters of the CV and MO 

Models were produced according to MLEs and CLRBs of the model by using the noiseless complex fMRI 

data [20], [26].The average voxel values of the true values as well as the calculated sample mean maps of the 

estimated parameters under the null and alternative hypothesis for each tissue type are given in Table 2 for CV 

Model, and in Table 4 for MO Model. Similar tables for the theoretical minimum and computed sample standard 

deviation maps of the CV and MO Models are also given in Table 3, Table 5, respectively. It can be observed that 

CV and MO Models mostly yield “good” results. However, it should be noted here that the results of these two 

models are compared with the true value and theoretical minimum standard deviation maps calculated from the 

considered models themselves. Furthermore, the CV and MO Models do not provide the proton spin density and 

relaxation parameter estimates unlike the DeTeCT and DeTeCT-ING Models. 

The true parameter maps of the DeTeCT and DeTeCT-ING Models are given in Fig. 2(a)–(f). The calculated 

sample mean of the estimated parameters, M0, T1, T2
⁎, δ, β1, θ, σ2, from the DeTeCT Model are given in Fig. 4(a)–

(g) (left: alternative, right: null hypothesis), respectively. It can be observed that the estimated parameters 

under the alternative hypothesis appear to be similar to the true parameter values given in Fig. 1 except for the 

blurring that is the result of the noise in the signal as well as the systematic error of the numerical optimization 

procedure. It can also be seen that the most apparent difference between the null and alternative hypotheses 

estimation results occurs in ROIs which become especially significant in M0, T1, δ, and σ2 results given in Fig. 4(a), 



(b), (d) and (g) since the only difference in the hypothesis setting given in Eq. (21) occurs in 

ROIs. Table 6 provides a better comparison between the true value and the sample mean estimated parameter 

values. One can observe that the difference between the calculated sample means of the parameters such 

as T2
⁎ and δ is higher compared to the difference for the other parameters in GM tissue and outside brain. The 

poor estimation that appears in such tissues could be considered as the result of having a nonlinear objective 

function given in Eq. (19) and six different parameters to be optimized in this system. Table 7 illustrates a 

comparison between the theoretical minimum standard deviations of the parameters that were calculated 

according to the numerically calculated CRLBs and the computed sample standard deviations of the estimated 

parameters. Although the sample standard deviations of T2
⁎ and δ are higher compared to the related CRLBs, 

the DeTeCT Model mostly produces “good” results in terms of the variances of the estimated parameters. 

 
 



 
Fig. 4. Calculated sample mean maps of the DeTeCT Model parameters. a) μ(M̂0) and μ(M̃0), b) μ(T̂1) and μ(T̃1) in 

s., c) μ(T̂2
⁎) and μ(T̃2

⁎) in s., d) μ(δ̂) and μ(δ̃), e) μ(�̂�1) and μ(β̃1), (f) μ(θ̂) and μ(θ̃), g) μ(σ̂2) and μ(σ̃2). 
 

The sample mean of the estimated parameters, M0, δ, β1, θ, and σ2, of the DeTeCT-ING Model under the null 

and alternative hypotheses is shown in Fig. 5(a)–(e) (left: alternative, right: null hypothesis), respectively. The 

average voxel values of the true parameter values and the calculated sample mean maps are given 

in Table 8 whereas the CRLBs and the calculated sample standard deviations are shown in Table 9. Fig. 5 as well 

as Table 7, Table 8 show that the DeTeCT-ING Model has a high statistical power in estimating the parameters. 

One can observe that the only “fair” and “poor” estimates appear to be in WM M0 and δ outside the phantom. 

However, better δ estimates can be seen in Fig. 5(b) compared to Fig. 4(d). It should be noted here that no signal 

areas, such as outside of the brain, have not been masked after estimation. It is thus expected that the 

parameters for the voxels outside the phantom may not have been estimated precisely as we expect. 



 

 
Fig. 5. Calculated sample mean maps of the DeTeCT-ING Model parameters. a) μ(M̂0) and μ(M̃0), b) μ(δ̂) and μ(δ̃), 

c) μ(�̂�1) and μ(β1̃), (d) μ(θ̂) and μ(θ̃), e) μ(σ̂2) and μ(σ̃2). 
 

As previously noted, activations are calculated from the likelihood ratio statistics − 2logλM for MO Model and 

− 2logλC for CV, DeTeCT, and DeTeCT-ING Models given in Eqs. (9), (15). The sample mean and the standard 

deviation of the activation statistics maps, Z-statistics for CV, DeTeCT and DeTeCT-ING Models and t-statistics for 

MO Model, which were thresholded at a 5% Bonferroni family-wise error rate are given in Fig. 6(a)–(d) and (e)–

(h), respectively. None of the models appears to produce false positives due to the low uncertainty in the 

simulated data. However, Fig. 6(e)–(h) shows that DeTeCT-ING Model produces lower variance in all tissue types 

in the phantom compared to the other models. 



 
Fig. 6. First row: Calculated sample means of the activation statistics (Z or t) of the models. a) μ(Z) (CV Model), 
b) μ(t) (MO Model), c) μ(Z) (DeTeCT Model), d) μ(Z) (DeTeCT-ING Model) Second row: Calculated sample 
standard deviations of the activation statistics (Z or t) of the models. e) (Z) (CV Model), f) μ(t) (MO Model), 
g) μ(Z) (DeTeCT Model), h) μ(Z) (DeTeCT-ING Model). 
 

We give a comparison between the CRLBs, which provide a quantitative measure of the attainable precision of 

parameter estimates, of the considered models in Table 10, Table 11. It can be observed from Table 10 and the 

results of a previous study [26] that the CRLB for the variance of the estimate of the observation variance is two 

times larger in the MO model than in the CV model. Table 11 shows that the CRLBs of the estimates of the 

common parameters of the DeTeCT and DeTeCT-ING Models are the same since these models have the same 

likelihood functions. It can also be seen from Table 10, Table 11 that the common parameters of all four models 

such as β1 and θ appear to have the same CRLBs. The minimal theoretical standard deviations of the estimates 

of M0, T1 and T2
⁎ are higher compared to those of the other parameters. The DeTeCT and DeTeCT-ING Models 

appear to have higher CRLBs of the estimate of δ in CSF and ROI areas compared to the other areas. It should be 

noted here that the CRLBs of MO and CV Models and the DeTeCT and DeTeCT-ING Models are not based on the 

same number of TRs since the first 20 observations are excluded for MO and CV Models. 



Table 10. Minimal theoretical standard deviation values of the CV and MO Model parameters. 

SD MO    CV      
β0 β1 β2 σ2 β0 β1 β2 θ σ2 

GM 0.0006 3E-06 0.0009 6E-06 0.0006 3E-06 0.0009 1E-04 5E-06 

WM 0.0006 3E-06 0.0009 6E-06 0.0006 3E-06 0.0009 1E-04 5E-06 

CSF 0.0006 3E-06 0.0009 6E-06 0.0006 3E-06 0.0009 1E-04 5E-06 

Out 0.0006 3E-06 0.0009 6E-06 0.0006 3E-06 0.0009 4E + 10 5E-06 

ROI 0.0006 3E-06 0.0009 6E-06 0.0006 3E-06 0.0009 1E-04 5E-06 

 

Table 11. Minimal theoretical standard deviation values of the DeTeCT and DeTeCT-ING Model parameters. 

SD DeTeCT       DeTeCT-ING      
M0 T1 T2

⁎ δ β1 θ σ2 M0 δ β1 θ σ2 

GM 0.0857 0.0358 0.0052 0.00023 3.08E-06 1.44E-04 4.43E-06 0.0857 0.000233 3.08E-06 1.44E-04 4.43E-06 

WM 0.0537 0.0237 0.0053 0.00024 3.08E-06 1.42E-04 4.43E-06 0.0537 0.000244 3.08E-06 1.42E-04 4.43E-06 

CSF 0.0718 0.0158 8.8591 0.46598 3.08E-06 1.41E-04 4.43E-06 0.0718 0.492673 3.08E-06 1.41E-04 4.43E-06 

Out 0.2807 3E-13 1.14E-19 5.65E-20 9.54E-07 6.72E-12 4.43E-06 0.2807 0.000000 9.54E-07 6.72E-12 4.43E-06 

ROI 0.0857 0.0358 0.0052 3.2462 3.08E-06 1.38E-04 4.43E-06 0.0857 3.246212 3.08E-06 1.38E-04 4.43E-06 



4.2.2. Part II: Simulated Data of Two Voxels with the Varying Parameter Setting 
Figs. 7(a), (b) and 8(a), (b) illustrate the TPR and FPR plots against the varied parameter, δ and α under Scenarios 

“a” and “b”, respectively. Furthermore, Fig. 8c shows the ROC curves plotted while α is are varied under 

Scenario “b”. ROC curve at varying δ is not presented because the FPR computed from the inactive voxel is not 

affected by the varying parameter, δ, as it is zero for the inactive voxel. In the plots presented in Fig. 7, Fig. 8, 

the colors red, green, blue and black represent the models CV, MO, DeTeCT and DeTeCT-ING, respectively. 

 
Fig. 7. (a) TPR and (b) FPR plots against the varied parameter, δ, under Scenario “a” in which σ = 0.5, and α = 
0.05. 
 



 
Fig. 8. (a) TPR, (b) FPR plots against the varied parameter, α, and (c) ROC curve under Scenario “b” in which 
σ = 0.5, and δ = 0.1. 
 

Fig. 7(a) and (b) shows the plots of TPR and FPRs for each model against δ for an α = 0.05 significance level, 

which are based on 1000 simulated time series with σ = 0.5. As seen in Fig. 7(a), even though TPRs of the models 

seem to coincide with each other; the MO and CV models have slightly higher TPRs especially at low δ values. 

However, there seems to be a trade-off between the TPRs and FPRs of the CV and MO Models, as Fig. 7(b) 

shows that FPRs of the CV and MO models are also higher than the DeTeCT and DeTeCT-ING Models’ FPRs. This 

may be explained by the fact that our simulations are based on the data generated from Eq. (17) which is closer 

to the physical magnetization of the signal than the linear model that the MO and CV models use. One can 

observe that the FPRs of the DeTeCT and DeTeCT-ING Models do not converge to the significance level of α = 



0.05 in Fig. 7(b), possibly due to some kind of bias that might have been created during the nonlinear numerical 

optimization process. 

Fig. 8(a)–(c) shows the plots of TPR and FPRs for each model against significance level, α, as well as the ROC 

scatter plot generated at varying α for δ = 0.1 for the active voxel, which are based on 1000 simulated time 

series with σ = 0.5. TPR plots of the CV, DeTeCT and DeTeCT-ING Models seem to slightly differ from each other 

whereas the MO model has insignificantly higher TPRs at almost all α values. As expected, it can be observed 

in Fig. 8(b) that the FPRs of the models increase with significance level, α. Moreover, the DeTeCT and DeTeCT-

ING Models show lower FPRs than the MO and CV Models at all α levels. ROC scatter plots in Fig. 8(c) show the 

full picture of trade-off between the TPR and FPR across a series of α values. Since more accurate activation 

detection model is expected to have a closer ROC curve to the upper-left border of the ROC space, the DeTeCT 

and DeTeCT-ING Models can be observed to be more accurate as producing less trade-off between FPR and 

TPRs. It can also be seen in Fig. 8(c) that the FPRs of the DeTeCT and DeTeCT-ING Models are not as high as the 

ones of MO and CV models at any significance level, α. 

Fig. 9 shows the plots of CRLBs and sample variances of the models’ parameters against δ for the single active 

voxel data generated based on Scenario “c” in which α = 0.05, σ = 0.01 and δ varying from 0 to 1 with 

increments of 0.1. Since the CV and MO models do not include M0, T1, T2
⁎ and δ; the MO model does not include 

θ; and the DeTeCT and DeTeCT-ING models do not include β0 and β2, the corresponding panels of Fig. 9 do not 

include such parameters. Further, Fig. 10 shows the plots of sample means and MSEs of the estimated σ2’s 

under each model against δ that are computed from the same single voxel data generated under Scenario “c”. 

We prefer to present the MSE plots of the parameter σ2 only since the MSEs of the other parameters are 

significantly close to the variance plots presented in Fig. 9 as a result of low bias of the estimators. In the plots 

presented in Fig. 9, Fig. 10, the colors red, green, blue and black represent the sample variances, MSEs or sample 

means of the CV, MO, DeTeCT and DeTeCT-ING models, whereas in Fig. 9, pink, cyan, and yellow represent the 

CRLBs of the CV, MO, and DeTeCT/DeTeCT-ING models, respectively. As noted before, the DeTeCT and DeTeCT-

ING Models have the same CRLBs since these models have the same likelihood functions. 

 
Fig. 9. CRLB and sample variance plots of the parameters against δ for the single active voxel data generated 

based on Scenario “c” in which α = 0.05, σ = 0.01. a) M0, b)T1, c) T2
⁎, d) δ, e) β1, f) θ, g) β0, h) β2, and i) σ2. 

 



 
Fig. 10. (a) Sample mean, and (b) MSE plots of σ2 against δ for the single active voxel data generated based on 
Scenario “c” in which α = 0.05, σ = 0.01. 
 

It can be seen in Fig. 9(a), (c) and (d) that the sample variances of the estimated M0, T2
⁎ and δ for the DeTeCT 

model (in blue) appear to be close but not coincident to the CRLB values (in yellow) whereas the sample 

variances of the estimated M0 and δ for the DeTeCT-ING model (in black) can be observed to be lower than 

CLRBs (in yellow) at all δ values. The sample variance plot of the estimated T1 that is given in Fig. 9(b) appears to 

coincide with its CRLB at α values higher than 0.4. It can be seen in Fig. 9e that the variances of β1 for all models 

achieve their CRLBs. It should be noted here that the DeTeCT and DeTeCT-ING models’ CRLBs (yellow) are lower 

than the CV and MO models’ CRLBs (pink) for the coefficient β1. In Fig. 9(f) and (g), the variance of θ appears to 

achieve its CRLBs for all models considered. Further, the variances of the coefficients β0 and β2 for the CV and 

MO models (in red and yellow), presented in Fig. 9(h) and (i), appear to achieve their CRLBs (in pink). Error 

variance estimate, given in Fig. 9(j), is approximately twice as large for the MO model than for the CV, DeTeCT 

and DeTeCT-ING models. This observation was verified by the fact that the CRLB for the variance of the 

observation variance is two times larger in the magnitude only data than the complex-valued data [26]. As such, 

the CRLBs for the variance of σ2 in the DeTeCT and DeTeCT-ING models are also found to be very close to the 

CRLBs for the variance of σ2 in CV model. Furthermore, the estimated variances of all models appear to be very 

close to their corresponding CRLBs. 

In Fig. 10(a), we present the computed sample means of σ2 for all models as well as the true σ2 value that we 

used when generating the data. Furthermore, we present the MSEs of σ2 for the models at varying δ 

in Fig. 10(b). It can observed in Fig 10(a) that the sample means of σ2 computed from the CV, DeTeCT and 

DeTeCT-ING models appear to be very close to each other and also to the true σ2 value. MO model seems to 



produce a lower error compared to the other models mostly at higher δ points. However, as a result of the MO 

model’s higher minimal theoretical error variance, the MSE of σ2 for the MO model appears to be higher than 

the other models, as it can be seen in Fig. 10(b). Further, the DeTeCT and DeTeCT-ING models seem to have 

slightly lower MSEs for σ2 than the CV model. Since the MSE decomposes into a sum of the bias and variance of 

the estimator, the MSE of the estimators needs to be as small as possible in order to achieve a good estimation 

performance. 

In general, the parameter estimates for the CV, DeTeCT and DeTeCT-ING models appear to be more efficient 

than the MO model at the considered δ levels. It should also be noted here that the DeTeCT and DeTeCT-ING 

models have superior benefits than the CV and MO models in terms of extracting more information from fMRI 

data by providing M0, T1 and T2
⁎ estimates as well as activation detection. Lower variance and bias of the 

variance estimator, σ2 imply a more stable variance of the model. Furthermore, lower mean of the variance 

estimator σ2 provides better stability of the other parameter estimates since the CRLBs of all estimators depend 

on σ2. As such, a better accuracy and stability of the DeTeCT and DeTeCT-ING Models can lead to better 

activation detection by providing lower FPRs, higher TPRs and ROC curves closer to the left quadrant, especially 

at extreme situations such as at low δ and very low or high α levels. 

4.3. Human Subject Data Results 
Data acquired for a human subject are corrupted by noise as a result of physiological effects and possible 

motion. Nonlinearity and the number of the parameters to be estimated in the system as well as the noise in the 

acquired data may pose computational difficulty when performing the nonlinear LS estimation. However, such 

problem can be overcome by choosing reasonable initial values of the parameters for the iterative search. In 

order to develop a more hybrid approach to the nonlinear estimation, the MLEs of M0, β1, and θ were 

analytically driven under the restricted null hypothesis of the DeTeCT-ING Model to be used as initial values. The 

derivations of the MLEs of the null hypothesis of the DeTeCT-ING Model are given in Appendix B. 

The tissue parameter maps, M0, T1, and T2
⁎, estimated from the alternative hypothesis of the DeTeCT Model 

given in Eq. (21) by using the numerical nonlinear are shown in Fig. 11(a)–(c). Fig. 12(a)–(c) shows activation 

images using the likelihood ratio test from the CV, MO and DeTeCT-ING Models, respectively. It can be observed 

that M0, T1, and T2
⁎ values are highly indicative of GM bordered in Fig. 11(a)–(c). Fig. 12 shows a high 

correspondence between decay coefficients deemed to be GM and bordered active areas that should be in GM. 

It can be observed that GM T1 values are higher than WM T1 values as it is given in Table 1. Corresponding 

tissues can also be seen in T2
⁎ map in Fig. 11(c). It is evident that the CV and DeTeCT-ING Models demonstrate 

superior power of detection over the MO model in left motor cortex and supplementary motor area in which 

the activation occurs. A higher power of detection can be seen in the bordered left motor cortex in Fig. 12(c) 

compared to the corresponding areas in Fig. 12(a) and (b). This observation is consistent with the outcomes of 

our simulation study presented in Fig. 8 in Part II of Section 4.2 which shows that the DeTeCT-ING model has a 

better activation detection power than the CV and MO models. Fig. 12(c) also shows that the DeTeCT-ING model 

produces no false positives outside brain unlike the CV model. Even though the false positive detections of this 

kind, which are distant from the tissues, can be easily masked, this outcome can be considered as the evidence 

of the DeTeCT-ING model’s benefit of theoretically eliminating false positive rates without the need of 

researchers’ decision for manual masking after the statistical analysis of the observed fMRI data. A few false 

positives that are not present in the CV or MO models can also be observed in the upper left side of the brain 

which is very close to no signal area. Such false positives can be caused by the signal changes due to non-

uniform sources of noise and artifact that are hard to be described and modeled. Furthermore, the assumption 

of independence of the observations in time or space may not be true in the human subject data. Such 

assumptions that are difficult to be satisfied can cause poor estimates and thus false positive rates especially in 



the areas near the edges of the brain. As such, these voxels that are incorrectly detected as active most possibly 

have task related signal changes that are not of biological origin. 

 
Fig.11. Estimated M0, T1, and T2

⁎ maps from the alternative hypothesis of the DeTeCT Model. a) M0, b) T1 (in s.), 

c) T2
⁎ (in s.). 

 

 
Fig. 12. Activation images thresholded at 5% FWE rate from a) CV, b) MO, and c) DeTeCT-ING Models. 
 

5. Discussion 
This work proposes a new statistical fMRI model for differential T2

⁎ contrast, so called the DeTeCT-ING Model, by 

incorporating T1 and T2
⁎ of gray matter tissue, considering the fact that the active voxels are located in gray 

matter. Furthermore, the physical magnetization equation was included into the model rather than using a 

linear model to describe the magnetization. Unlike the previously presented fMRI activation models, the first 

scans of fMRI data were not discarded since they have the biological information of the brain, including the 

tissue parameters such as relaxation parameter and spin density of the tissues. 

The selection of the imaging parameters, TR, TE and flip angle, plays an important role for determining accurate 

measure of tissue parameters. The acquisition parameters for this study were selected to be appropriate for 

both T1 and T2
⁎ estimation and brain activation detection since we perform them from a single pulse sequence. 

The selection of 90° flip angle was made in order to simplify the temporarily varying magnitude Mt, given in 

Eq. (17) so that the magnetization at time for the DeTeCT and DeTeCT-ING Models does not depend on the 

magnetization at previous time point. As such, the computational complexity of the numerical optimization of 

the log likelihood function is relatively reduced. It should be noted here that it is possible to reduce TR and TE to 

increase T1 and T2
⁎ contrast since T1 and T2

⁎ are influenced by TR and TE, respectively. Discarding the 

computational complexity of the problem, the optimum flip angle that can give the 

optimum T1 and T2
⁎ estimates in terms of the accuracy of the measurements would be the one that makes the 

signal weighted equally on T1 and T2
⁎. 

There are three main contributions of the developed model to the current studies in the field by utilizing the 

aforementioned neglected information. First, the proposed method provides a significant step to modeling the 

fMRI data closer to that actually seen in the real experiments with the use of physical magnetization equation. 

Second, utilization of the gray matter tissue relaxation parameters in the statistical fMRI activation model 

provides a theoretical elimination of the possible false positives in the process of hypothesis testing while 

computing activation statistics. As such, the DeTeCT-ING Model provides more accurate and significant 

activation statistics. Third, the model allows one to simultaneously estimate the relaxation parameters which 

could be used for tissue characterization, by utilizing the information in the first few images. 



The proposed model in this study can be applied to improve the sensitivity to detect brain activation in fMRI by 

theoretically restricting the search volume of the statistical analysis to the grey matter only. The primary 

application of the method can be fMRI analysis for the diagnosis of grey matter diseases such as degenerative 

diseases by automatically segmenting grey matter to limit analysis to grey matter voxels. The method can be 

useful in the analysis of fMRI data that are prone to produce false positive rates as a result of thermal noise, 

physiological noise, or correlated noise in the data. 

Appendix A. CRLBs of the DeTeCT and DeTeCT-ING Models 
The CRLB for the variance of an unbiased estimate of a model parameter requires the second derivatives of the 

logarithm of the likelihood function, LL, with respect to the model parameters. The logarithm of the likelihood 

function of the DeTeCT and DeTeCT-ING Models can be written as 
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where the temporarily varying magnitude Mt, given in Eq. (17), becomes 
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when the flip angle, ϕ, is assumed to be π/2 as in our calculations. 

By substituting Eq. (A.2) into Eq. (A.1), the logarithm of the likelihood is 
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Eq. (A.3) can be alternatively represented by the vector multiplications as follows 

(A.4) 
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where r* has tth element of rt [cos (ϕ − θ)], and s* has tth element of expTEtT2*+δzt. 

Maximizing this likelihood with respect to the parameters is the same as maximizing the logarithm of the 

likelihood denoted LL with respect to the parameters and yields 
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𝜕𝑠∗

𝜕𝑇2 
∗
)
′

(𝑋1𝛽1 − 𝑟∗)] 

(A.8) 

𝜕𝐿𝐿

𝜕𝛿
= −

1

𝜎2
[𝑀0 

2(1 − 𝑒𝑥𝑝(−𝑇𝑅/𝑇1))
2
(
𝜕𝑠∗

𝜕𝛿
)
′

𝑠∗ + 𝑀0(1 − 𝑒𝑥𝑝(−𝑇𝑅/𝑇1)) (
𝜕𝑠∗

𝜕𝛿
)
′

(𝑋1𝛽1 − 𝑟∗)] 

(A.9) 

𝜕𝐿𝐿

𝜕𝛽1
= −

1

2𝜎2 [2𝑋1 
′𝑟 + 2𝑋1 

′𝑋1𝛽1 + 2𝑋1 
′(𝑟 − 𝑟∗) + 2𝑀0(1 − 𝑒𝑥𝑝(−𝑇𝑅/𝑇1))𝑋1 

′𝑠∗] 

(A.10) 

𝜕𝐿𝐿

𝜕𝜃
= −

1

𝜎2 [−(𝑦𝐼𝑐𝑜𝑠𝜃 − 𝑦𝑅𝑠𝑖𝑛𝜃)′(𝑋1𝛽1) − 𝑀0(1 − 𝑒𝑥𝑝(−𝑇𝑅/𝑇1))(𝑦𝐼𝑐𝑜𝑠𝜃 − 𝑦𝑅𝑠𝑖𝑛𝜃)′𝑠∗] 

(A.11) 

𝜕𝐿𝐿

𝜕𝜎2
= −

𝑛

2
+

1

2(𝜎2)2

[
 
 
 
 

(𝑟 − 𝑋1𝛽1)
′(𝑟 − 𝑋1𝛽1) + 2(𝑟 − 𝑟∗)

′𝑋1𝛽1

+(𝑠∗𝑀0(1 − 𝑒𝑥𝑝(−𝑇𝑅/𝑇1)))
′
(𝑠∗𝑀0(1 − 𝑒𝑥𝑝(−𝑇𝑅/𝑇1)))

+2 (𝑠∗𝑀0(1 − 𝑒𝑥𝑝(−𝑇𝑅/𝑇1)))
′
(𝑋1𝛽1 − 𝑟∗) ]

 
 
 
 

 

The CRLB for the variance of an unbiased estimate of a model parameter requires the symmetric Hessian matrix, 

generally denoted by H and is formed from second derivatives of the log likelihoods LL with respect to the model 

parameters. The second derivatives can be computed from the first derivatives of LL given in 

Eqs. (A.5), (A.6), (A.7), (A.8), (A.9), (A.10), (A.11). 

The matrix of CRLBs can be found via the inverse of the Fisher information matrix. By taking expectations of the 

block elements of the Hessian matrices, the CRLBs can be found. The Fisher information matrices, generically 



denoted by I, are − E [H|M0, T1, T2
⁎, δ, β1, σ2] for the DeTeCT and DeTeCT-ING Models that are the expectation of 

the Hessian matrix H with respect to yR and yI given M0, T1, T2
⁎, δ, β1, σ2. 

Appendix B. MLEs of the DeTeCT-ING Model under the Null Hypothesis 
The MLEs of the DeTeCT-ING Model under the restricted null hypothesis, H0: T1 = T1GM, T2 = T2GM, δ = 0, are 

computed maximizing the likelihood with respect to parameters, M0, β1, θ and σ2. Maximizing this likelihood 

with respect to the parameters is the same as maximizing the logarithm of the likelihood, LL, with respect to the 

parameters. By setting the derivatives that are given in Eqs. (5), (9), (10), (11), equal to zero and solving, the 

MLE’s under the null hypothesis can be found as follows 

(B.1) 

�̂�0 = −
(�̂�∗ 

′(𝑋1𝛽1 − �̂�∗))

(1 − 𝑒𝑥𝑝(−𝑇𝑅/𝑇1  𝐺𝑀
)) (�̂�∗ 

′�̂�∗)
 

(B.2) 

�̂�1 = (𝑋1 
′𝑋 − 𝑋1 

′�̂�∗(�̂�
′
∗�̂�∗)

−1�̂�′
∗𝑋1 

′)−1(𝑋1 
′�̂�∗ − 𝑋1 

′�̂�∗(�̂�
′
∗�̂�∗)

−1�̂�′
∗�̂�∗) 

(B.3) 

𝜕�̂�∗

𝜕𝜃
[�̂�∗�̂�0 (1 − 𝑒𝑥𝑝(−𝑇𝑅/𝑇1  𝐺𝑀

)) + 𝑋1�̂�1] = 0 

(B.4) 

�̂�2 =
1

2𝑛

[
 
 
 
 
 (𝑟 − 𝑋1�̂�1)

′
(𝑟 − 𝑋1�̂�1) + 2(𝑟 − �̂�∗)

′𝑋1�̂�1

+(�̂�∗�̂�0 (1 − 𝑒𝑥𝑝(−𝑇𝑅/𝑇1𝐺𝑀
)))

′

(�̂�∗�̂�0 (1 − 𝑒𝑥𝑝(−𝑇𝑅/𝑇1𝐺𝑀
)))

+2(�̂�∗�̂�0 (1 − 𝑒𝑥𝑝(−𝑇𝑅/𝑇1𝐺𝑀
)))

′

(𝑋1�̂�1 − �̂�∗) ]
 
 
 
 
 

 

where r*̂ has tth element of rt[cos (ϕ − θ̂)], and ŝ* has tth element of expTEtT2*GM. 
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