11,864 research outputs found

    Highly efficient Bayesian joint inversion for receiver-based data and its application to lithospheric structure beneath the southern Korean Peninsula

    Get PDF
    With the deployment of extensive seismic arrays, systematic and efficient parameter and uncertainty estimation is of increasing importance and can provide reliable, regional models for crustal and upper-mantle structure.We present an efficient Bayesian method for the joint inversion of surface-wave dispersion and receiver-function data that combines trans-dimensional (trans-D) model selection in an optimization phase with subsequent rigorous parameter uncertainty estimation. Parameter and uncertainty estimation depend strongly on the chosen parametrization such that meaningful regional comparison requires quantitative model selection that can be carried out efficiently at several sites. While significant progress has been made for model selection (e.g. trans-D inference) at individual sites, the lack of efficiency can prohibit application to large data volumes or cause questionable results due to lack of convergence. Studies that address large numbers of data sets have mostly ignored model selection in favour of more efficient/simple estimation techniques (i.e. focusing on uncertainty estimation but employing ad-hoc model choices). Our approach consists of a two-phase inversion that combines trans-D optimization to select the most probable parametrization with subsequent Bayesian sampling for uncertainty estimation given that parametrization. The trans-D optimization is implemented here by replacing the likelihood function with the Bayesian information criterion (BIC). The BIC provides constraints on model complexity that facilitate the search for an optimal parametrization. Parallel tempering (PT) is applied as an optimization algorithm. After optimization, the optimal model choice is identified by the minimum BIC value from all PT chains. Uncertainty estimation is then carried out in fixed dimension. Data errors are estimated as part of the inference problem by a combination of empirical and hierarchical estimation. Data covariance matrices are estimated from data residuals (the difference between prediction and observation) and periodically updated. In addition, a scaling factor for the covariance matrix magnitude is estimated as part of the inversion. The inversion is applied to both simulated and observed data that consist of phase- and group-velocity dispersion curves (Rayleigh wave), and receiver functions. The simulation results show that model complexity and important features are well estimated by the fixed dimensional posterior probability density. Observed data for stations in different tectonic regions of the southern Korean Peninsula are considered. The results are consistent with published results, but important features are better constrained than in previous regularized inversions and are more consistent across the stations. For example, resolution of crustal and Moho interfaces, and absolute values and gradients of velocities in lower crust and upper mantle are better constrained

    Patterns of Scalable Bayesian Inference

    Full text link
    Datasets are growing not just in size but in complexity, creating a demand for rich models and quantification of uncertainty. Bayesian methods are an excellent fit for this demand, but scaling Bayesian inference is a challenge. In response to this challenge, there has been considerable recent work based on varying assumptions about model structure, underlying computational resources, and the importance of asymptotic correctness. As a result, there is a zoo of ideas with few clear overarching principles. In this paper, we seek to identify unifying principles, patterns, and intuitions for scaling Bayesian inference. We review existing work on utilizing modern computing resources with both MCMC and variational approximation techniques. From this taxonomy of ideas, we characterize the general principles that have proven successful for designing scalable inference procedures and comment on the path forward

    Structurally Tractable Uncertain Data

    Full text link
    Many data management applications must deal with data which is uncertain, incomplete, or noisy. However, on existing uncertain data representations, we cannot tractably perform the important query evaluation tasks of determining query possibility, certainty, or probability: these problems are hard on arbitrary uncertain input instances. We thus ask whether we could restrict the structure of uncertain data so as to guarantee the tractability of exact query evaluation. We present our tractability results for tree and tree-like uncertain data, and a vision for probabilistic rule reasoning. We also study uncertainty about order, proposing a suitable representation, and study uncertain data conditioned by additional observations.Comment: 11 pages, 1 figure, 1 table. To appear in SIGMOD/PODS PhD Symposium 201
    corecore