561 research outputs found

    Frozen the l1l_1-norm of coherence under strictly incoherent operations

    Full text link
    Quantum coherence as an important physical resource plays the key role in implementing various quantum tasks, whereas quantum coherence is often deteriorated due to the system-environment interacting. We analyse under which dynamical conditions the l1l_1-norm of coherence is unaffected for an initial coherent state in a strictly incoherent operation (SIO). Based on this analysis, we give a complete classification of coherent states from operational coherence theory. This may provide an insightful physical interpretation for frozen phenomena of quantum coherence.Comment: 11 pages, 34 reference

    No second law of entanglement manipulation after all

    Full text link
    We prove that the theory of entanglement manipulation is asymptotically irreversible under all non-entangling operations, showing from first principles that reversible entanglement transformations require the generation of entanglement in the process. Entanglement is thus shown to be the first example of a quantum resource that does not become reversible under the maximal set of free operations, that is, under all resource non-generating maps. Our result stands in stark contrast with the reversibility of quantum and classical thermodynamics, and implies that no direct counterpart to the second law of thermodynamics can be established for entanglement -- in other words, there exists no unique measure of entanglement governing all axiomatically possible state-to-state transformations. This completes the solution of a long-standing open problem [Problem 20 in arXiv:quant-ph/0504166]. We strengthen the result further to show that reversible entanglement manipulation requires the creation of exponentially large amounts of entanglement according to monotones such as the negativity. Our findings can also be extended to the setting of point-to-point quantum communication, where we show that there exist channels whose parallel simulation entanglement cost exceeds their quantum capacity, even under the most general quantum processes that preserve entanglement-breaking channels. The main technical tool we introduce is the tempered logarithmic negativity, a single-letter lower bound on the entanglement cost that can be efficiently computed via a semi-definite program.Comment: 16+30 pages, 3 figures. v2: minor clarification

    The coherent measurement cost of coherence distillation

    Full text link
    Quantum coherence is an indispensable resource for quantum technological applications. It is known to be distillable from a noisy form using operations that cannot create coherence. However, distillation exacts a hidden coherent measurement cost, whose extent has not previously been estimated. Here we show that this cost (quantified by an equivalent number of Hadamard measurements) is related to what we call the irretrievable coherence: the difference between the coherence of formation and the distillable coherence. We conjecture (and make partial progress towards proving) that when distilling from many copies of a given noisy coherent state, the coherent measurement cost scales extensively in the number of copies, at an asymptotic rate exactly equalling the input's irretrievable coherence. This cost applies to any application whereof coherence distillation is an incidental outcome (e.g. incoherent randomness extraction), but the implications are more dramatic if pure coherence is the only desired outcome: the measurement cost may often be higher than the distilled yield, in which case coherence should rather be prepared afresh than distilled from a noisy input.Comment: 24+5 pages, 1 figur

    Tight constraints on probabilistic convertibility of quantum states

    Full text link
    We develop two general approaches to characterising the manipulation of quantum states by means of probabilistic protocols constrained by the limitations of some quantum resource theory. First, we give a general necessary condition for the existence of a physical transformation between quantum states, obtained using a recently introduced resource monotone based on the Hilbert projective metric. In all affine quantum resource theories (e.g. coherence, asymmetry, imaginarity) as well as in entanglement distillation, we show that the monotone provides a necessary and sufficient condition for one-shot resource convertibility under resource-non-generating operations, and hence no better restrictions on all probabilistic protocols are possible. We use the monotone to establish improved bounds on the performance of both one-shot and many-copy probabilistic resource distillation protocols. Complementing this approach, we introduce a general method for bounding achievable probabilities in resource transformations under resource-non-generating maps through a family of convex optimisation problems. We show it to tightly characterise single-shot probabilistic distillation in broad types of resource theories, allowing an exact analysis of the trade-offs between the probabilities and errors in distilling maximally resourceful states. We demonstrate the usefulness of both of our approaches in the study of quantum entanglement distillation.Comment: 46 pages, 3 figures. Technical companion paper to Phys. Rev. Lett. 128, 110505 (2022) [arXiv:2109.04481]; contains mostly content that was split off from arXiv:2109.04481v1, plus a lot of clarifications, extensions, and additional examples. v3: Accepted versio

    Exact solution for the quantum and private capacities of bosonic dephasing channels

    Full text link
    The capacities of noisy quantum channels capture the ultimate rates of information transmission across quantum communication lines, and the quantum capacity plays a key role in determining the overhead of fault-tolerant quantum computation platforms. In the case of bosonic systems, central to many applications, no closed formulas for these capacities were known for bosonic dephasing channels, a key class of non-Gaussian channels modelling, e.g., noise affecting superconducting circuits or fiber-optic communication channels. Here we provide the first exact calculation of the quantum, private, two-way assisted quantum, and secret-key agreement capacities of all bosonic dephasing channels. We prove that that they are equal to the relative entropy of the distribution underlying the channel to the uniform distribution. Our result solves a problem that has been open for over a decade, having been posed originally by [Jiang & Chen, Quantum and Nonlinear Optics 244, 2010].Comment: 10+20 pages, 6 figures. v2 is close to the published versio
    • …
    corecore